别让AI智能体成为你的"智障体"
“老板,我们也要上Agent!”
最近在各种技术交流群里,这句话出现的频率快赶上"元宇宙"刚火那会儿了。每当AI又展示什么新功能,总有人激动地喊着要做Agent,仿佛不上Agent就落后于时代。
可现实往往是这样的:花了几个月时间,投入一堆人力物力,做出来的Agent要么答非所问,要么执行到一半就"死机",要么干脆把简单问题复杂化。最后老板问效果如何,只能尴尬地说"还在优化中"。
问题出在哪里?不是技术不行,而是路径选错了。
清醒认识:Agent不是万能药
很多人对Agent有个误解,以为它是万能的。
看之前Manus的演示视频,看到各种炫酷的展示,就觉得Agent可以解决一切问题。
真相是什么?
大模型本身就不是万能的,Agent也不可能是。它更像是一个放大器——如果底层逻辑对了,它能放大你的能力;如果底层逻辑错了,它只会放大你的错误。
我见过一个案例,某公司想用Agent做客服系统。
理想很美好:客户问什么,Agent都能智能回答,还能主动推荐产品。
结果呢?Agent经常答错问题,推荐的产品驴唇不对马嘴,客户投诉率反而上升了。
问题在哪?他们跳过了最基础的环节——连基本的FAQ都没梳理清楚,就想直接上Agent。这好比房子地基都没打好,就想盖摩天大楼。
Agent真正适合的场景有三种:复杂决策、难以维护的规则系统、严重依赖经验的非结构化数据处理
。
如果你的问题不在这三类里,老老实实用传统方法可能效果更好。
渐进式路径:从爬到跑的智慧
聪明的做法是什么?循序渐进。
第一步,提示工程
别小看这个环节,很多问题在这里就能解决。
我认识一个电商公司的技术负责人,他们最开始想做复杂的多Agent系统来处理商品描述。
最后发现,精心设计的提示词就能完成80%的工作,成本还低了一个数量级。
第二步,工作流
当单纯的提示词不够用时,考虑工作流。
这个阶段你还能控制主要逻辑,不会让AI跑偏太远。就像开车,你还握着方向盘。
第三步,单Agent
任务复杂到工作流也搞不定时,才考虑单Agent。
这时候你要放一部分控制权给AI,让它自己做决策。风险高了,但能力也强了。
第四步,多Agent
需要多个角色协同时,才用多Agent。这是最复杂的,也是最容易出问题的。
很多公司的问题是,一上来就想做多Agent系统,结果搞得复杂无比,维护成本奇高,效果还不如简单的工作流。
有个创业公司,CEO看了几篇技术文章就要求团队做"AI员工"。
团队花了半年时间做了个多Agent系统,几个虚拟员工在那里"开会讨论",看起来很炫酷。
实际使用时发现,这些AI员工经常在无关紧要的话题上"争论"不休,真正有用的结论很少。
最后还是回到了简单的工作流方案。
落地考量:成本和效果的平衡
技术可行不代表商业可行。
每次调用LLM的成本大概几分钱,听起来不多。
但如果你的Agent每天要处理10万次请求,每次平均调用5次模型,一个月下来就是好几万块。这还不算开发和维护成本。
我见过一个案例,某公司用Agent做简历筛选。
技术上完全没问题,筛选准确率也挺高。问题是成本太高了,每筛选一份简历要花8毛钱,而HR手工筛选的人力成本只要2毛钱。老板算了笔账,果断叫停了项目。
还有延迟问题。
如果你的应用要求0.5秒内响应,Agent基本是不可能的。
这时候老老实实用BERT这样的小模型,反而是明智选择。很多人有个误区,以为新技术一定比旧技术好。分类任务用BERT,生成任务用GPT,这个基本原则没过时。
错误容忍度也是关键考量。
如果Agent判断错了会造成重大损失,那就必须加人工干预。
我知道一个金融科技公司,他们的风控Agent有个原则:任何超过1万块的决策,都要人工复核。
技术再先进,也不能拿公司的钱开玩笑。
现实挑战:理想与现实的差距
Agent听起来美好,现实却很骨感。
Agent不是万能的,也不是必需的。在合适的场景用合适的技术,在能控制成本和风险的前提下追求效果,这才是理性的态度。
技术的进步让我们有了更多选择,但选择的智慧,还得靠我们自己。
你觉得呢?