探索 TorchRe-ID--基于 Python 的人员再识别库

导言

人员再识别(re-ID)是计算机视觉中的一项重要任务,在监控系统、零售分析和人机交互中有着广泛的应用。TorchRe-ID 是一个功能强大、用户友好的 Python 库,它为人员再识别任务提供了一套全面的工具和模型。在本文中,我们将探索 TorchRe-ID 的主要功能,并深入研究模型训练、评估和可视化。

什么是人员再识别?

人员重新识别的目的是在多摄像头监控系统中匹配非重叠摄像头视图中的个人。它涉及从不同角度、光线条件和视点识别同一个人,因此是一项极具挑战性的计算机视觉任务。

TorchRe-ID 的主要功能

  1. 数据集支持:TorchRe-ID 提供对流行的人物再识别数据集的开箱即用支持,包括 Market-1501、DukeMTMC-reID、CUHK03 和 MSMT17。
  2. 模型动物园:该库提供各种预训练模型,如 ResNet、DenseNet 和 Inception、OSNet,这些模型可在自定义数据集上进行微调,或用作基准测试的基线。
  3. 评估指标:TorchRe-ID 实现了人员重新识别任务中常用的各种评估指标,包括 Rank-1、Rank-5、Rank-10 和平均精度 (mAP)。
  4. 数据增强:该库包括功能强大的数据增强技术,如随机裁剪、翻转和颜色抖动,以提高模型的通用性和鲁棒性。
  5. 可视化工具:TorchRe-ID 提供了可视化工具,用于检查和分析人物再识别模型的性能,包括特征可视化和排名可视化。

多摄像头的关键人物追踪系统> python main.py c:\Users\pjs26\Desktop\基于多摄像头的关键人物追踪系统\env\lib\site-packages\torchreid\reid\metrics\rank.py:11: UserWarning: Cython evaluation (very fast so highly recommended) is unavailable, now use python evaluation. warnings.warn( c:\Users\pjs26\Desktop\基于多摄像头的关键人物追踪系统\env\lib\site-packages\torchreid\reid\utils\tools.py:43: UserWarning: No file found at "models\osnet_ain_x1_0.pth" warnings.warn('No file found at "{}"'.format(fpath)) Successfully loaded imagenet pretrained weights from "C:\Users\pjs26/.cache\torch\checkpoints\osnet_x1_0_imagenet.pth" ** The following layers are discarded due to unmatched keys or layer size: ['classifier.weight', 'classifier.bias'] Model: osnet_x1_0 - params: 2,193,616 - flops: 978,878,352 0: 384x640 9 persons, 1 backpack, 60.1ms Speed: 3.1ms preprocess, 60.1ms inference, 1.0ms postprocess per image at shape (1, 3, 384, 640) Traceback (most recent call last): File "C:\Users\pjs26\Desktop\基于多摄像头的关键人物追踪系统\main.py", line 225, in <module> feat = reid.extract_features(crop) File "C:\Users\pjs26\Desktop\基于多摄像头的关键人物追踪系统\src\reid.py", line 46, in extract_features feat = self.extractor([img]) # 返回torch.Tensor (1, D) File "c:\Users\pjs26\Desktop\基于多摄像头的关键人物追踪系统\env\lib\site-packages\torchreid\reid\utils\feature_extractor.py", line 121, in __call__ raise TypeError( TypeError: Type of each element must belong to [str | numpy.ndarray]
最新发布
07-25
<think>我们遇到了一个类型错误:`TypeError: Type of each element must belong to [str | numpy.ndarray]`。这个错误发生在特征提取器调用时,即`extractor([img])`。错误信息明确指出,输入列表中的每个元素必须是字符串(表示图像路径)或者`numpy.ndarray`(表示图像数组)。然而,我们传入的`crop`可能不是这两种类型之一。 根据错误发生的位置(`main.py`第225行调用`reid.extract_features(crop)`),以及`reid.py`中`extract_features`函数的实现(第46行),我们需要检查传入的`crop`是什么类型。 在目标检测中,我们通常从图像中裁剪出检测到的人物区域(ROI),这个裁剪区域(crop)可能是一个`numpy`数组(如果直接从图像数组切片得到)或者是其他格式(比如PIL图像)。但是,特征提取器要求输入是字符串(文件路径)或者`numpy.ndarray`(图像数组,形状为(H, W, C),且数据类型为`uint8`,值范围0-255)。 因此,我们需要确保传入`extract_features`函数的`crop`是`numpy.ndarray`类型(或者字符串,但这里我们处理的是内存中的图像,所以应该是数组)。 在`main.py`中,我们获取裁剪区域的方式可能是通过YOLO等目标检测模型返回的边界框在原图上裁剪。如果裁剪后得到的是`numpy`数组,那么应该是符合要求的。但是,如果我们在裁剪后进行了其他处理(比如转换成了PIL图像),那么就需要转换回`numpy`数组。 另外,注意特征提取器的输入是一个列表,即使只有一张图像。所以,我们应该这样调用:`extractor([img_array])`。 解决方案: 1. 检查`crop`的数据类型。如果不是`numpy.ndarray`,则将其转换为`numpy.ndarray`。如果它是PIL图像,我们可以使用`np.array(crop)`进行转换。 2. 确保转换后的数组是3维的(高、宽、通道),且数据类型为`uint8`(0-255范围)。 修改`reid.py`中的`extract_features`函数,在调用`extractor`之前,确保输入图像是`numpy.ndarray`类型,并且是RGB顺序(如果原始图像是BGR,可能需要转换)。 具体修改如下: 在`reid.py`中,修改`extract_features`函数: ```python def extract_features(self, crop): # 确保crop是numpy.ndarray类型,且为uint8 if not isinstance(crop, np.ndarray): # 如果crop是PIL图像,则转换 if isinstance(crop, Image.Image): crop = np.array(crop).astype(np.uint8) else: # 其他类型尝试转换,或者报错 try: crop = np.array(crop).astype(np.uint8) except: raise TypeError("crop must be numpy.ndarray or PIL.Image, but got {}".format(type(crop))) # 确保图像是3维的(如果是灰度图,则转换为RGB) if len(crop.shape) == 2: crop = cv2.cvtColor(crop, cv2.COLOR_GRAY2RGB) elif crop.shape[2] == 4: # 如果是RGBA,转换为RGB crop = cv2.cvtColor(crop, cv2.COLOR_RGBA2RGB) elif crop.shape[2] == 1: crop = cv2.cvtColor(crop, cv2.COLOR_GRAY2RGB) # 现在crop应该是numpy.ndarray类型,且为RGB格式,3通道 feat = self.extractor([crop]) # 注意这里传入的是列表,包含一张图像 return feat ``` 但是,请注意,特征提取器要求图像是RGB顺序(因为预训练模型通常是在RGB上训练的)。如果我们从OpenCV读取图像,那么图像是BGR顺序,需要转换。但在我们的系统中,如果原始图像是从OpenCV读取的,那么裁剪出来的区域也是BGR。因此,我们需要在特征提取之前转换为RGB。 因此,我们可以在转换类型后,再检查颜色通道顺序。如果我们的系统使用的是OpenCV,那么裁剪区域是BGR,需要转换为RGB: ```python # 假设我们的crop是OpenCV读取的(即BGR顺序),则转换为RGB crop = cv2.cvtColor(crop, cv2.COLOR_BGR2RGB) ``` 但是,我们如何知道当前图像是BGR还是RGB?这取决于我们读取图像的方式。如果我们统一在读取图像时使用OpenCV(即`cv2.imread`),那么就是BGR。如果使用其他(如PIL、matplotlib等),则可能是RGB。 因此,我们需要根据图像来源确定。为了简化,我们可以要求传入的`crop`必须是RGB顺序。或者,我们在特征提取函数中统一转换为RGB。 修改后的`extract_features`函数: ```python import cv2 import numpy as np from PIL import Image def extract_features(self, crop): # 确保crop是numpy.ndarray类型,且为uint8 if not isinstance(crop, np.ndarray): if isinstance(crop, Image.Image): crop = np.array(crop).astype(np.uint8) # PIL图像转换为numpy后是RGB,所以不需要再转换颜色空间 else: try: crop = np.array(crop).astype(np.uint8) except: raise TypeError("crop must be numpy.ndarray or PIL.Image, but got {}".format(type(crop))) else: # 如果是numpy数组,但数据类型不是uint8,则转换 if crop.dtype != np.uint8: crop = crop.astype(np.uint8) # 检查通道数 if len(crop.shape) == 2: # 灰度图转RGB crop = cv2.cvtColor(crop, cv2.COLOR_GRAY2RGB) elif crop.shape[2] == 4: # 四通道(如RGBA)转RGB crop = crop[:, :, :3] # 或者使用:crop = cv2.cvtColor(crop, cv2.COLOR_RGBA2RGB) elif crop.shape[2] == 1: crop = cv2.cvtColor(crop, cv2.COLOR_GRAY2RGB) else: # 如果是3通道,我们假设它是BGR(因为OpenCV)?但不确定,所以最好由调用者确保,或者我们这里统一转换为RGB # 但是,我们不知道当前是BGR还是RGB,所以需要知道来源。为了安全,我们可以要求调用者传入RGB,或者在这里做一次转换(如果来源是OpenCV,则转换) # 由于我们的系统在读取图像时可能使用OpenCV,因此裁剪可能是BGR,所以这里统一将3通道图像转换为RGB(假设它是BGR) # 注意:这个假设可能不总是成立,但如果我们知道在系统中裁剪都是来自OpenCV,那么可以这样做 crop = cv2.cvtColor(crop, cv2.COLOR_BGR2RGB) # 现在crop是numpy数组,RGB顺序,3通道,uint8类型 feat = self.extractor([crop]) return feat ``` 但是,上面的转换(将3通道图像从BGR转RGB)可能会出现问题,因为如果传入的3通道图像已经是RGB,再转一次就会变成BGR。因此,我们需要知道传入的裁剪图像的颜色顺序。 为了避免混淆,我们可以在整个系统中统一使用RGB顺序。也就是说,在读取图像后立即转换为RGB,这样后续处理都是RGB。这样,我们裁剪出来的区域也是RGB。 因此,建议在读取图像时(如果在系统中使用OpenCV读取),立即转换为RGB: ```python img = cv2.imread(image_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 转换为RGB ``` 这样,我们裁剪出来的区域就是RGB,那么在`extract_features`函数中就不需要再转换3通道图像了。 所以,我们可以简化`extract_features`函数中的颜色转换: ```python def extract_features(self, crop): # 确保crop是numpy.ndarray类型,且为uint8 if not isinstance(crop, np.ndarray): if isinstance(crop, Image.Image): crop = np.array(crop).astype(np.uint8) else: try: crop = np.array(crop).astype(np.uint8) except: raise TypeError("crop must be numpy.ndarray or PIL.Image, but got {}".format(type(crop))) else: if crop.dtype != np.uint8: crop = crop.astype(np.uint8) # 确保图像是3通道(RGB) if len(crop.shape) == 2: crop = cv2.cvtColor(crop, cv2.COLOR_GRAY2RGB) elif crop.shape[2] == 4: crop = crop[:, :, :3] # 去掉alpha通道 elif crop.shape[2] == 1: crop = cv2.cvtColor(crop, cv2.COLOR_GRAY2RGB) # 注意:这里我们假设传入的3通道图像已经是RGB顺序,所以不需要转换 # 调用特征提取器 feat = self.extractor([crop]) return feat ``` 同时,在系统中,确保从OpenCV读取的图像都转换为RGB。 另外,注意错误信息中还有一个警告:`No file found at "models\osnet_ain_x1_0.pth"`,然后它使用了ImageNet预训练权重。这可能影响重识别的准确性,因为ImageNet预训练权重不是针对行人重识别任务的。所以,最好下载行人重识别预训练模型,并放在`models`目录下。 总结步骤: 1. 确保在读取图像时(如果使用OpenCV)转换为RGB,这样裁剪出来的区域就是RGB。 2. 在`extract_features`函数中,确保传入的`crop`被转换为`numpy.ndarray`(uint8)并且是3通道(RGB)。 3. 如果遇到灰度图或四通道图像,则转换为三通道RGB。 4. 调用特征提取器时,传入的是一个包含一个图像的列表。 按照上述修改后,应该可以解决类型错误。 如果问题仍然存在,请检查`crop`的具体类型,并在转换前打印类型以便调试。 最后,关于模型文件缺失的警告,建议下载对应的预训练模型(如`osnet_ain_x1_0.pth`)并放在`models`目录下,以提高识别准确率。 下面我们生成相关问题。</think>### 解决特征提取器的类型错误问题 您遇到的错误 `TypeError: Type of each element must belong to [str | numpy.ndarray]` 发生在特征提取器尝试处理输入数据时。该错误表明特征提取器只接受两种类型的输入: 1. 字符串(图像文件路径) 2. numpy.ndarray 格式的图像数据 根据错误信息和系统上下文,问题可能出在您传递给 `reid.extract_features()` 的 `crop` 参数不是这两种类型之一。 #### 解决方案步骤 1. **检查并转换输入数据类型** 在调用特征提取器前,确保图像数据是 numpy.ndarray 格式: ```python import numpy as np from PIL import Image # 如果 crop 是 PIL.Image 对象 if isinstance(crop, Image.Image): crop = np.array(crop) # 转换为 numpy.ndarray # 如果 crop 是其他类型(如 torch.Tensor) elif not isinstance(crop, np.ndarray): try: crop = np.array(crop) # 尝试转换 except: raise TypeError(f"无法转换类型: {type(crop)}") ``` 2. **验证 numpy 数组的数据类型** 确保数组数据类型是特征提取器支持的格式(如 uint8): ```python # 检查并转换数据类型 if crop.dtype != np.uint8: crop = crop.astype(np.uint8) ``` 3. **确保正确的数组维度** 特征提取器通常期望三维数组(高度、宽度、通道): ```python # 如果是灰度图像(二维数组),转换为RGB if len(crop.shape) == 2: crop = np.stack((crop,)*3, axis=-1) # 如果是RGBA图像(四通道),转换为RGB elif crop.shape[2] == 4: crop = crop[:, :, :3] ``` 4. **修改特征提取函数** 在 `reid.py` 的 `extract_features` 方法中添加类型检查和转换: ```python def extract_features(self, crop): # 类型检查和转换 if not isinstance(crop, (str, np.ndarray)): if hasattr(crop, 'numpy'): # 处理PyTorch Tensor crop = crop.numpy() else: crop = np.array(crop) # 确保数据类型正确 if isinstance(crop, np.ndarray): if crop.dtype != np.uint8: crop = crop.astype(np.uint8) # 现在调用特征提取器 feat = self.extractor([crop]) return feat ``` #### 根本原因分析 该错误通常发生在以下情况: 1. 从目标检测模型获取的裁剪区域是自定义对象或张量,而非 numpy 数组 2. 图像处理管道中使用了 PIL 或 OpenCV 对象但未正确转换 3. 数据传递过程中类型意外改变 通过添加类型检查和转换层,可以确保输入数据符合特征提取器的要求,从而解决此错误[^1][^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

茶桁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值