打家劫舍3-LeetCode337

这篇博客讨论了一道关于二叉树的动态规划问题,小偷需要在不触发警报的情况下从树形结构的房屋中盗取最高金额。错误的解题思路是通过层序遍历来计算每层的总价值,然后使用动态规划,而正确的解决方案则是采用后序遍历,分别计算选择和不选择当前节点时的最大价值,存储在两个映射中。最后,从小偷的角度返回最大可能的盗窃金额。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目描述

小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root 。

除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。

给定二叉树的 root 。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。

二、解题思路

求“盗取最高金额”,所以考虑用动态规划。该题涉及在二叉树中利用动态规划求取最优子结构。考虑到每个节点有1)选择 2)不选择两种情况,且当前节点的选择与不选择会影响其子节点的选择情况,所以考虑利用二叉树的后序遍历,先考虑子节点的情况,再考虑父节点。

三、代码实现

xxxxx(1)一开始的错误思路!!!

 //    思路有错误:我的思路认为当可以选择某行中元素时,该行所有元素都应该被选中,这显然是错误的
//    比如我选左孩子不选右孩子,那么下一次我就可以不选左孩子的所有孩子,但可以选右孩子的所有孩子
    public int rob1(TreeNode root) {
        //首先层序遍历,每层之和存入数组
        List<Integer> sumPerLevel = new ArrayList<>();
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()) {
            int size = queue.size();
            int sum = 0;
            for (int i = 0; i < size; i++) {
                TreeNode node = queue.poll();
                if (node.left != null) {
                    queue.offer(node.left);
                }
                if (node.right != null) {
                    queue.offer(node.right);
                }
                sum += node.val;
            }
            System.out.println(sum + " ");
            sumPerLevel.add(sum);
        }
        //进行动态规划
        int len = sumPerLevel.size();
        int[][] dp = new int[len][3];
        //初始化[0][0]表示选
        dp[0][0] = sumPerLevel.get(0);
        dp[0][1] = 0;
        dp[0][2] = 0;
        for (int i = 1; i < len; i++) {
            dp[i][0] = Math.max(dp[i - 1][1], dp[i - 1][2]) + sumPerLevel.get(i);
            dp[i][1] = dp[i - 1][0];
            dp[i - 1][2] = Math.max(dp[i - 1][1], dp[i - 1][2]);
        }
        return Math.max(dp[len - 1][0], Math.max(dp[len - 1][1], dp[len - 1][2]));
    }

正确解法如下: 

 /**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
     //    存储选择当前元素时,该节点对应最大值
    Map<TreeNode, Integer> f = new HashMap<>();
    //    存储不选择当前元素时,该节点对应最大值
    Map<TreeNode, Integer> g = new HashMap<>();




    //---------------------------分割线-------------------
    public int rob(TreeNode root) {
        dfs(root);
        return Math.max(f.getOrDefault(root, 0), g.getOrDefault(root, 0));
    }

    public void dfs(TreeNode root) {
        if (root == null) {
            return;
        }
        //后序遍历
        dfs(root.left);
        dfs(root.right);
//        当前父节点选,则子节点必定不选
        f.put(root, g.getOrDefault(root.left, 0) + g.getOrDefault(root.right, 0) + root.val);
//        当前父节点不选,则节点可能选可能不选
        g.put(root, Math.max(f.getOrDefault(root.left, 0), g.getOrDefault(root.left, 0)) + Math.max(f.getOrDefault(root.right, 0), g.getOrDefault(root.right, 0)));
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值