原文:http://blog.csdn.net/Dr_Neo/article/details/44107269
(1)基本运算
两图像相加:
add(InputArray src1,InputArray src2, OutputArray dst, InputArray mask=noArray(),int dtype=-1):如可用add(A,B,C)来计算C=A+B;如果指定了图像掩模mask(注:mask必须为单通道),则运算只在mask对应像素部位null的像素上进行,add(A,B,C,mask)意为if(mask[i]0)c[i]=a[i]+b[i];
addWeighted(InputArray src1,double alpha, InputArray src2, double beta, double gamma,OutputArraydst, int dtype=-1):计算加权和,如addWeighted(A,k1,B,k2,k3,C)表示C=k1*A+k2*B+k3;
scaleAdd(A,k1,B,C)表示C=k1*A+B
减:subtract(A,B,C)表示C=A-B
乘:mutiply(A,B,C,k)表示C=k*A*B
divide(InputArray src1,InputArray src2, OutputArray dst, double scale=1,int dtype=-1):除法,divide(A,B,C,k)表示C=(A*k/B);也可以直接用一个scale来除以array,divide(k,B,C)表示C=k/B
当然还有其他计算符,如log()、exp()
位运算:
bitwise_and(InputArray src1,InputArray src2, OutputArray dst, InputArray mask=noArray()):按位与,bitwise_and(A,B,C,mask)表示if(mask[i])a[i]^b[i]=c[i]
bitwise_not(A,B,mask):按位非,b[i] =~a[i]
bitwise_or(A,B,C):按位或,C=AB
bitewise_xor(A,B,C):按位异或,C=AB
此处需要注意的是,所有这些运算都会调用cv::saturate_cast函数来进行截断操作,以保证输出像素值都在合理的范围之内。另外,OpenCV对c++的很多操作符都进行了重载,所以可以直接使用运算符+,=,*,/,&,|,~,^,<,>等来对图像矩阵进行操作,矩阵求逆m.inv(),矩阵转置m.t(),行列式m.determinant(),向量模v.norm(),向量叉乘v1.cross(v2),向量点积v1.dot(v2)
(2)矩阵操作
calcCovarMatrix():计算协方差矩阵
invert(InputArray src,OutputArray dst, int flags=DECOMP_LU):求逆矩阵
sqrt(InputArray src,OutputArray dst):计算平方根
求绝对值:
abs(const Mat& m):求绝对值,输入参数可是矩阵也可是表达式,如:C=abs(A),C=abs(A-B)
absdiff(InputArray src1,InputArray src2, OutputArray dst):absdiff(A,B,C)等价于C=abs(A-B)
cartToPolar(InputArray x, InputArray y,OutputArray magnitude, OutputArray angle, boolangleInDegrees=false):计算二维矢量的幅值和向角
dct(InputArray src,OutputArray dst, int flags=0):离散余弦变换
dft(InputArray src,OutputArray dst, int flags=0, int nonzeroRows=0):离散傅里叶变换
flip(InputArray src,OutputArray dst, int flipCode):对图像进行翻转,flipCode>0,进行垂直翻转;flipCode=0,进行水平翻转;flipCode<0,同时进行水平、垂直翻转;
(3)比较操作
CheckRange():用来判断输入array中的每个元素是否都处于某一范围内
compare(InputArray A, InputArray B,OutputArray C, int cmpop):根据参数cmpop的值来决定A和B比较的方式,其值有CMP_EQ,CMP_GT, CMP_GE, CMP_LT, CMP_LE, CMP_NE,结果输出为C;
min():如C=min(A,B)表示c[i]=min(a[i],b[i])
max():与min()类似
注意,此处所有函数在调用时都要加上命名空间cv::
opencv里面,基本上矩阵、向量能想到的操作都有相对应的函数,非常之多,在此不能一一列出,具体的在opencv的online documentation里面都有。建议大家在实际编程时,遇到跟矩阵相关的运算、操作时都先去查阅一下opencv的online documentation,要是里面有现成的函数就可以直接调用了,没有的再去自己想办法写。有关矩阵操作符的库函数主要集中在opencv_core模块中。
今天用到opencv求解矩阵的协方差矩阵,无意中发现了一个问题,写出来供大家参考。
- #include <opencv2/opencv.hpp>
- #include <iostream>
- using namespace std;
- using namespace cv;
- void displayMat(Mat& mat)
- {
- for (int i = 0;i<mat.rows;i++)
- {
- for (int j = 0;j<mat.cols ;j++)
- {
- printf("%f ",mat.at<double>(i,j));
- }
- printf("\n");
- }
- }
- int main()
- {
- double data[5][4] = { 1, 2, 3 , 4 ,
- 5, 6, 7 , 8 ,
- 9, 0, 1 , 3 ,
- 2, 4, 6 , 8 ,
- 1, 3, 5 , 9
- };
- Mat mat(5,4,CV_64FC1) ;
- for (int i =0;i<mat.rows;i++)
- {
- for (int j = 0;j<mat.cols ;j++)
- {
- mat.at<double>(i,j) = data[i][j];
- }
- }
- Mat covMat;
- Mat meanMat;
- calcCovarMatrix(mat,covMat,meanMat,CV_COVAR_NORMAL|CV_COVAR_ROWS);
- cout<<"cov:"<<endl;
- //打印矩阵
- displayMat(covMat);
- cout<<"mean:"<<endl;
- displayMat(meanMat);
- return 0;
- }
实验结果:
- cov:
- 47.200000 -11.000000 -15.200000 -19.200000
- -11.000000 20.000000 21.000000 19.000000
- -15.200000 21.000000 23.200000 23.200000
- -19.200000 19.000000 23.200000 29.200000
- mean:
- 3.600000 3.000000 4.400000 6.400000
只看这个结果你肯定不会发现任何问题,下面让我们看看matlab中的结果
- data=[1, 2, 3 , 4;
- 5, 6, 7 , 8;
- 9, 0, 1 , 3;
- 2, 4, 6 , 8;
- 1, 3, 5 , 9 ];
- >> cov(data)
- ans =
- 11.8000 -2.7500 -3.8000 -4.8000
- -2.7500 5.0000 5.2500 4.7500
- -3.8000 5.2500 5.8000 5.8000
- -4.8000 4.7500 5.8000 7.3000
- >> cov(data)*4
- ans =
- 47.2000 -11.0000 -15.2000 -19.2000
- -11.0000 20.0000 21.0000 19.0000
- -15.2000 21.0000 23.2000 23.2000
- -19.2000 19.0000 23.2000 29.2000
这次你肯定会发现问题了,是的,OpenCV中求得的协方差矩阵要比matlab中的大4倍!
经过我多次实验的出结论:opencv中求得的协方差矩阵比matlab中的大(n-1)倍!(n是矩阵的行数)
不知道是什么原因,有知道的大神可以说一下。