值域范围 tf.clip_by_value的用法

本文介绍了TensorFlow中tf.clip_by_value函数的使用,该函数用于将张量中的数值限定在指定范围内,小于最小值的设为最小值,大于最大值的设为最大值。通过示例展示了如何操作并返回限定后的张量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



 

tf.clip_by_value的用法

tf.clip_by_value(A, min, max):输入一个张量A,把A中的每一个元素的值都压缩在min和max之间

import numpy as np import pypower.api as pp import gurobipy as gp import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import time import warnings import matplotlib import math import traceback # 设置支持中文的字体 plt.rcParams['font.sans-serif'] = ['SimHei', 'Arial Unicode MS'] plt.rcParams['axes.unicode_minus'] = False # 忽略特定警告 warnings.filterwarnings("ignore", category=RuntimeWarning) # =================== 数值稳定性增强函数 =================== def safe_divide(a, b, default=1e-6): """安全除法函数,避免除以零""" if np.isclose(b, 0, atol=1e-10): return default return a / b def clean_ppc_data(ppc): """ 清洗电力系统数据,处理无效值 (增强版) """ branch = ppc['branch'].copy() bus = ppc['bus'].copy() gen = ppc['gen'].copy() # 1. 处理分支数据 branch[:, 2] = np.where(np.abs(branch[:, 2]) < 1e-5, 1e-5, branch[:, 2]) # 电阻 branch[:, 3] = np.where(np.abs(branch[:, 3]) < 1e-5, 0.01, branch[:, 3]) # 电抗 branch[:, 4] = np.where(np.abs(branch[:, 4]) < 1e-5, 1e-5, branch[:, 4]) # 充电电纳 branch[:, 8] = np.where(np.abs(branch[:, 8]) < 1e-5, 1.0, branch[:, 8]) # 变比 branch[:, 9] = np.nan_to_num(branch[:, 9], nan=0.0) # 角度 branch[:, 5] = np.where(branch[:, 5] <= 0, 1e6, branch[:, 5]) # 线路容量 # 2. 处理母线数据 bus[:, 11] = np.clip(bus[:, 11], 0.9, 1.1) # VMAX bus[:, 12] = np.clip(bus[:, 12], 0.9, 1.1) # VMIN # 3. 处理发电机数据 gen[:, 9] = np.maximum(gen[:, 9], 0) # PMIN gen[:, 8] = np.maximum(gen[:, 8], gen[:, 9] + 1e-3) # PMAX gen[:, 5] = np.maximum(gen[:, 5], 0.9) # VMIN gen[:, 4] = np.minimum(np.maximum(gen[:, 4], gen[:, 5] + 0.01), 1.1) # VMAX return { 'baseMVA': ppc['baseMVA'], 'bus': bus, 'gen': gen, 'branch': branch, 'gencost': ppc.get('gencost', None) } # =================== 导纳矩阵计算函数 (优化后) =================== def makeYbus(ppc): """构建导纳矩阵 (优化版本)""" baseMVA = ppc['baseMVA'] bus = ppc['bus'] branch = ppc['branch'] # 数据清洗 ppc = clean_ppc_data(ppc) bus = ppc['bus'] branch = ppc['branch'] n_bus = bus.shape[0] Ybus = np.zeros((n_bus, n_bus), dtype=complex) # 处理变压器和线路参数 for i in range(branch.shape[0]): f = int(branch[i, 0] - 1) t = int(branch[i, 1] - 1) # 获取线路参数 (使用安全值) r = max(branch[i, 2], 1e-5) # 电阻最小值 x = branch[i, 3] b = branch[i, 4] # 线路充电电纳 tap = branch[i, 8] if branch[i, 8] != 0 else 1.0 shift = np.deg2rad(branch[i, 9]) # 弧度 # 处理零阻抗 if np.isclose(r, 0, atol=1e-10) and np.isclose(x, 0, atol=1e-10): y_series = 1e5 # 大导纳值 else: y_series = 1 / complex(r, x) # 移相器处理 if shift != 0: phase_shift = np.exp(1j * shift) else: phase_shift = 1.0 # 标准导纳矩阵元素计算 Ytt = y_series + 1j * b / 2 Yff = Ytt / (tap * np.conj(phase_shift)) / tap Yft = -y_series / (np.conj(phase_shift) * tap) Ytf = -y_series / (phase_shift * tap) # 更新导纳矩阵 Ybus[f, f] += Yff Ybus[t, t] += Ytt Ybus[f, t] += Yft Ybus[t, f] += Ytf return Ybus # =================== Gurobi求解AC OPF (优化后 - 极坐标形式) =================== def run_ac_opf_gurobi(ppc): try: # 获取系统数据 baseMVA = ppc['baseMVA'] bus = ppc['bus'] gen = ppc['gen'] branch = ppc['branch'] gencost = ppc.get('gencost', None) # 确保数据已清洗 ppc = clean_ppc_data(ppc) bus = ppc['bus'] gen = ppc['gen'] branch = ppc['branch'] # 系统参数 n_bus = bus.shape[0] n_gen = gen.shape[0] n_branch = branch.shape[0] # 默认成本函数 if gencost is None: gencost = np.zeros((n_gen, 6)) for i in range(n_gen): gencost[i] = [1, 0, 0, 3, 0.01, 0.1] # 二次成本函数 # 构建导纳矩阵 Ybus = makeYbus(ppc) G = np.real(Ybus) B = np.imag(Ybus) # 创建Gurobi模型 model = gp.Model('AC_OPF_Polar') model.Params.NumericFocus = 3 model.Params.FeasibilityTol = 1e-6 model.Params.OptimalityTol = 1e-6 model.Params.NonConvex = 2 model.Params.BarConvTol = 1e-8 model.Params.TimeLimit = 600 # 600秒时间限制 # =================== 创建变量 (极坐标形式) =================== # 电压幅值和角度 v_mag = model.addVars(n_bus, lb=bus[:, 12], ub=bus[:, 11], name='v_mag') # |V| theta = model.addVars(n_bus, lb=-2*np.pi, ub=2*np.pi, name='theta') # θ # 发电机出力 Pg = model.addVars(n_gen, name='Pg') # 发电机有功 Qg = model.addVars(n_gen, name='Qg') # 发电机无功 # =================== Jabr变量 (Page 32) =================== v_sq = model.addVars(n_bus, name='v_sq') # v² = |V|² c = model.addVars(n_branch, lb=-1e3, ub=1e3, name='c') # |Vₖ||Vₘ|cosθ s = model.addVars(n_branch, lb=-1e3, ub=1e3, name='s') # |Vₖ||Vₘ|sinθ # =================== 设置参考母线 =================== ref_bus = 0 model.addConstr(theta[ref_bus] == 0.0, name='theta_ref') # =================== 变量关系约束 =================== # 电压幅值平方关系 for i in range(n_bus): model.addConstr(v_sq[i] == v_mag[i] * v_mag[i], name=f'v_sq_{i}') # Jabr变量关系 for idx in range(n_branch): f = int(branch[idx, 0] - 1) t = int(branch[idx, 1] - 1) # |Vₖ||Vₘ|cos(θₖ - θₘ) model.addConstr(c[idx] == v_mag[f] * v_mag[t] * gp.cos(theta[f] - theta[t]), name=f'c_{f}_{t}') # |Vₖ||Vₘ|sin(θₖ - θₘ) model.addConstr(s[idx] == v_mag[f] * v_mag[t] * gp.sin(theta[f] - theta[t]), name=f's_{f}_{t}') # Jabr不等式 (Page 32) model.addConstr(c[idx]*c[idx] + s[idx]*s[idx] <= v_sq[f] * v_sq[t], name=f'Jabr_{f}_{t}') # =================== 发电机约束 =================== gen_bus = gen[:, 0].astype(int) - 1 for i in range(n_gen): bus_idx = int(gen_bus[i]) # 有功约束 model.addConstr(Pg[i] >= gen[i, 9] / baseMVA, name=f'Pgmin_{i}') model.addConstr(Pg[i] <= gen[i, 8] / baseMVA, name=f'Pgmax_{i}') # 无功约束 model.addConstr(Qg[i] >= gen[i, 4] / baseMVA, name=f'Qgmin_{i}') model.addConstr(Qg[i] <= gen[i, 3] / baseMVA, name=f'Qgmax_{i}') # =================== 功率平衡约束 =================== Pd = bus[:, 2] / baseMVA Qd = bus[:, 3] / baseMVA # 预计算发电机位置 gen_at_bus = {} for i in range(n_bus): gen_at_bus[i] = [] for k in range(n_gen): bus_idx = int(gen_bus[k]) gen_at_bus[bus_idx].append(k) # 节点注入功率计算 for i in range(n_bus): # 有功平衡 Pi_expr = 0.0 for j in range(n_bus): if abs(G[i, j]) > 1e-10 or abs(B[i, j]) > 1e-10: if i == j: Pi_expr += G[i, j] * v_sq[i] else: # 找到连接i和j的支路 branch_found = False for idx in range(n_branch): f = int(branch[idx, 0] - 1) t = int(branch[idx, 1] - 1) if (f == i and t == j) or (f == j and t == i): if f == i and t == j: Pi_expr += G[i, j] * v_sq[i] + G[i, j] * c[idx] + B[i, j] * s[idx] else: Pi_expr += G[i, j] * v_sq[i] + G[i, j] * c[idx] - B[i, j] * s[idx] branch_found = True break if not branch_found: # 如果没有直接支路,使用近似 theta_diff = theta[i] - theta[j] Pi_expr += v_mag[i] * v_mag[j] * (G[i, j] * gp.cos(theta_diff) + B[i, j] * gp.sin(theta_diff)) gen_P = gp.quicksum(Pg[k] for k in gen_at_bus.get(i, [])) model.addConstr(Pi_expr == gen_P - Pd[i], name=f'P_balance_{i}') # 无功平衡 Qi_expr = 0.0 for j in range(n_bus): if abs(G[i, j]) > 1e-10 or abs(B[i, j]) > 1e-10: if i == j: Qi_expr += -B[i, j] * v_sq[i] else: # 找到连接i和j的支路 branch_found = False for idx in range(n_branch): f = int(branch[idx, 0] - 1) t = int(branch[idx, 1] - 1) if (f == i and t == j) or (f == j and t == i): if f == i and t == j: Qi_expr += -B[i, j] * v_sq[i] - B[i, j] * c[idx] + G[i, j] * s[idx] else: Qi_expr += -B[i, j] * v_sq[i] - B[i, j] * c[idx] - G[i, j] * s[idx] branch_found = True break if not branch_found: # 如果没有直接支路,使用近似 theta_diff = theta[i] - theta[j] Qi_expr += v_mag[i] * v_mag[j] * (G[i, j] * gp.sin(theta_diff) - B[i, j] * gp.cos(theta_diff)) gen_Q = gp.quicksum(Qg[k] for k in gen_at_bus.get(i, [])) model.addConstr(Qi_expr == gen_Q - Qd[i], name=f'Q_balance_{i}') # =================== 线路潮流约束 =================== for idx in range(n_branch): f = int(branch[idx, 0] - 1) t = int(branch[idx, 1] - 1) rateA = branch[idx, 5] / baseMVA # 线路容量 (标幺值) # 计算线路潮流 (Page 32) P_ft = G[f, f] * v_sq[f] + G[f, t] * c[idx] + B[f, t] * s[idx] Q_ft = -B[f, f] * v_sq[f] - B[f, t] * c[idx] + G[f, t] * s[idx] # 损耗不等式 (Page 37) P_tf = G[t, t] * v_sq[t] + G[t, f] * c[idx] - B[t, f] * s[idx] model.addConstr(P_ft + P_tf >= 0, name=f'loss_{f}_{t}') # 线路容量约束 if rateA > 0: model.addConstr(P_ft*P_ft + Q_ft*Q_ft <= rateA*rateA, name=f'line_cap_{idx}') # =================== 目标函数 =================== cost = gp.QuadExpr() for i in range(n_gen): model_type = gencost[i, 0] ncost = int(gencost[i, 3]) if model_type == 1 and ncost == 3: # 二次成本 c2 = gencost[i, 4] c1 = gencost[i, 5] cost += c2 * (baseMVA ** 2) * Pg[i] * Pg[i] + c1 * baseMVA * Pg[i] elif model_type == 1 and ncost == 2: # 线性成本 c1 = gencost[i, 4] cost += c1 * baseMVA * Pg[i] else: # 默认线性 c1 = gen[i, 6] if gen.shape[1] > 6 else 10.0 cost += c1 * baseMVA * Pg[i] model.setObjective(cost, gp.GRB.MINIMIZE) # =================== 求解模型 =================== start_time = time.time() model.optimize() solve_time = time.time() - start_time # 结果状态处理 solution_status = "最优解" if model.status == gp.GRB.OPTIMAL: success = True elif model.status == gp.GRB.TIME_LIMIT and model.SolCount > 0: success = True solution_status = f"时间限制内找到可行解 (目标值: {model.ObjVal:.4f})" else: success = False solution_status = f"求解失败 (状态: {model.status})" # 处理结果 results = { 'success': success, 'status': solution_status, 'f': model.ObjVal if hasattr(model, 'ObjVal') else float('nan'), 'gen': np.zeros((n_gen, 4)), 'bus': np.zeros((n_bus, 4)), 'solve_time': solve_time } # 提取结果 if model.SolCount > 0: # 发电机结果 for i in range(n_gen): results['gen'][i, 0] = gen_bus[i] + 1 results['gen'][i, 1] = Pg[i].X * baseMVA results['gen'][i, 2] = Qg[i].X * baseMVA # 母线结果 for i in range(n_bus): results['bus'][i, 0] = i + 1 results['bus'][i, 1] = v_mag[i].X results['bus'][i, 2] = np.rad2deg(theta[i].X) else: # 没有找到可行解,使用初始值 for i in range(n_gen): results['gen'][i, 0] = gen_bus[i] + 1 results['gen'][i, 1] = gen[i, 9] results['gen'][i, 2] = 0.0 for i in range(n_bus): results['bus'][i, 0] = i + 1 results['bus'][i, 1] = 1.0 results['bus'][i, 2] = 0.0 return results except Exception as e: traceback.print_exc() n_bus = ppc['bus'].shape[0] if 'bus' in ppc else 1 n_gen = ppc['gen'].shape[0] if 'gen' in ppc else 1 return { 'success': False, 'status': f"异常: {str(e)}", 'f': float('nan'), 'gen': np.zeros((n_gen, 4)) * float('nan'), 'bus': np.zeros((n_bus, 4)) * float('nan'), 'solve_time': 0 } # =================== PyPower求解AC OPF =================== def run_ac_opf_pypower(ppc): """使用PyPower求解AC最优潮流(增强错误处理)""" try: # 确保数据已清洗 ppc = clean_ppc_data(ppc) # 设置求解选项 ppopt = pp.ppoption(VERBOSE=0, OUT_ALL=0, OPF_FLOW_LIM=1) # 求解AC OPF start_time = time.time() results = pp.runopf(ppc, ppopt) solve_time = time.time() - start_time if results['success']: return { 'success': True, 'status': "最优解", 'f': results['f'], 'gen': results['gen'], 'bus': results['bus'], 'solve_time': solve_time } else: # 尝试收集部分结果 partial_results = { 'success': False, 'status': "求解失败", 'f': float('nan'), 'solve_time': solve_time } # 尝试收集可用的结果 try: if 'gen' in results: partial_results['gen'] = results['gen'] else: partial_results['gen'] = ppc['gen'].copy() partial_results['gen'][:, 1] = ppc['gen'][:, 9] partial_results['gen'][:, 2] = 0.0 except: partial_results['gen'] = ppc['gen'].copy() partial_results['gen'][:, 1] = ppc['gen'][:, 9] partial_results['gen'][:, 2] = 0.0 try: if 'bus' in results: partial_results['bus'] = results['bus'] else: partial_results['bus'] = ppc['bus'].copy() partial_results['bus'][:, 7] = 1.0 partial_results['bus'][:, 8] = 0.0 except: partial_results['bus'] = ppc['bus'].copy() partial_results['bus'][:, 7] = 1.0 partial_results['bus'][:, 8] = 0.0 return partial_results except Exception as e: import traceback traceback.print_exc() # 创建近似结果 n_bus = ppc['bus'].shape[0] if 'bus' in ppc else 1 n_gen = ppc['gen'].shape[0] if 'gen' in ppc else 1 # 创建近似解 gen_results = np.zeros((n_gen, 4)) if n_gen > 0: gen_results[:, 0] = ppc['gen'][:, 0] gen_results[:, 1] = ppc['gen'][:, 9] gen_results[:, 2] = 0.0 bus_results = np.zeros((n_bus, 4)) if n_bus > 0: bus_results[:, 0] = ppc['bus'][:, 0] bus_results[:, 1] = 1.0 bus_results[:, 2] = 0.0 return { 'success': False, 'status': f"异常: {str(e)}", 'f': float('nan'), 'gen': gen_results, 'bus': bus_results, 'solve_time': 0 } # =================== 比较分析和可视化函数 =================== def run_comparison_analysis(case_name): """运行两种求解器的比较分析(增强鲁棒性)""" try: # 加载测试案例 if case_name == 'case9': ppc_data = pp.case9() elif case_name == 'case14': ppc_data = pp.case14() elif case_name == 'case30': ppc_data = pp.case30() elif case_name == 'case118': ppc_data = pp.case118() else: raise ValueError(f"未知测试案例: {case_name}") baseMVA = ppc_data['baseMVA'] n_bus = ppc_data['bus'].shape[0] n_gen = ppc_data['gen'].shape[0] # 使用Gurobi求解 print(f"\n使用Gurobi求解{case_name}...") gurobi_results = run_ac_opf_gurobi(ppc_data) # 使用PyPower求解 print(f"\n使用PyPower求解{case_name}...") pypower_results = run_ac_opf_pypower(ppc_data) # 创建结果比较数据框 # 1. 母线结果比较 bus_comparison = pd.DataFrame({ 'Bus': range(1, n_bus + 1) }) # 添加Gurobi结果 bus_comparison['V_gurobi'] = gurobi_results['bus'][:, 1] bus_comparison['Angle_gurobi'] = gurobi_results['bus'][:, 2] # 添加PyPower结果 if pypower_results['bus'].shape[1] > 8: bus_comparison['V_pypower'] = pypower_results['bus'][:, 7] bus_comparison['Angle_pypower'] = pypower_results['bus'][:, 8] else: bus_comparison['V_pypower'] = pypower_results['bus'][:, 1] bus_comparison['Angle_pypower'] = np.zeros(n_bus) # 计算差异 bus_comparison['V_diff'] = np.abs(bus_comparison['V_gurobi'] - bus_comparison['V_pypower']) bus_comparison['Angle_diff'] = np.abs(bus_comparison['Angle_gurobi'] - bus_comparison['Angle_pypower']) # 2. 发电机结果比较 gen_comparison = pd.DataFrame({ 'Gen': ppc_data['gen'][:, 0] }) # 添加Gurobi结果 gen_comparison['P_gurobi'] = gurobi_results['gen'][:, 1] gen_comparison['Q_gurobi'] = gurobi_results['gen'][:, 2] # 添加PyPower结果 gen_comparison['P_pypower'] = pypower_results['gen'][:, 1] gen_comparison['Q_pypower'] = pypower_results['gen'][:, 2] # 计算差异 gen_comparison['P_diff'] = np.abs(gen_comparison['P_gurobi'] - gen_comparison['P_pypower']) gen_comparison['Q_diff'] = np.abs(gen_comparison['Q_gurobi'] - gen_comparison['Q_pypower']) # 打印求解状态 print(f"\n求解状态 ({case_name}):") print(f" Gurobi: {gurobi_results['status']}") print(f" PyPower: {pypower_results['status']}") # 打印求解时间 print(f"\n求解时间 ({case_name}):") print(f" Gurobi: {gurobi_results['solve_time']:.4f} 秒") print(f" PyPower: {pypower_results['solve_time']:.4f} 秒") # 打印目标函数值 if not np.isnan(gurobi_results['f']): print(f"\nGurobi目标函数值: {gurobi_results['f']:.2f}") if not np.isnan(pypower_results['f']): print(f"PyPower目标函数值: {pypower_results['f']:.2f}") return bus_comparison, gen_comparison, gurobi_results, pypower_results except Exception as e: import traceback traceback.print_exc() print(f"在分析案例 {case_name} 时发生错误: {str(e)}") # 创建空结果 bus_comp = pd.DataFrame( columns=['Bus', 'V_gurobi', 'Angle_gurobi', 'V_pypower', 'Angle_pypower', 'V_diff', 'Angle_diff']) gen_comp = pd.DataFrame(columns=['Gen', 'P_gurobi', 'Q_gurobi', 'P_pypower', 'Q_pypower', 'P_diff', 'Q_diff']) return bus_comp, gen_comp, None, None def plot_comparison_results(bus_comp, gen_comp, case_name): """可视化比较结果""" plt.figure(figsize=(15, 10)) # 电压比较图 plt.subplot(2, 2, 1) plt.plot(bus_comp['Bus'], bus_comp['V_gurobi'], 'bo-', label='Gurobi') plt.plot(bus_comp['Bus'], bus_comp['V_pypower'], 'r^--', label='PyPower') plt.xlabel('母线编号') plt.ylabel('电压幅值 (p.u.)') plt.title(f'{case_name} - 电压幅值比较') plt.legend() plt.grid(True) # 电压差异图 plt.subplot(2, 2, 2) plt.bar(bus_comp['Bus'], bus_comp['V_diff']) plt.xlabel('母线编号') plt.ylabel('电压差异 (p.u.)') plt.title(f'{case_name} - 电压幅值差异') plt.grid(True) # 有功功率比较图 plt.subplot(2, 2, 3) plt.plot(gen_comp['Gen'], gen_comp['P_gurobi'], 'bo-', label='Gurobi') plt.plot(gen_comp['Gen'], gen_comp['P_pypower'], 'r^--', label='PyPower') plt.xlabel('发电机母线') plt.ylabel('有功出力 (MW)') plt.title(f'{case_name} - 发电机有功比较') plt.legend() plt.grid(True) # 有功功率差异图 plt.subplot(2, 2, 4) plt.bar(gen_comp['Gen'], gen_comp['P_diff']) plt.xlabel('发电机母线') plt.ylabel('有功差异 (MW)') plt.title(f'{case_name} - 发电机有功差异') plt.grid(True) plt.tight_layout() plt.savefig(f'{case_name}_comparison.png', dpi=300) plt.close() # =================== 主程序 =================== if __name__ == "__main__": # 测试不同案例 test_cases = ['case9', 'case14', 'case30', 'case118'] for case in test_cases: print(f"\n{'=' * 50}") print(f"开始分析案例: {case}") print(f"{'=' * 50}") # 运行比较分析 bus_comp, gen_comp, gurobi_res, pypower_res = run_comparison_analysis(case) # 打印节点结果 if not bus_comp.empty: print("\n节点结果:") print( f"{'母线':<5} | {'电压(Gurobi)':<12} | {'电压(PyPower)':<12} | {'角度(Gurobi)':<12} | {'角度(PyPower)':<12}") for _, row in bus_comp.iterrows(): print(f"{int(row['Bus']):<5} | {row['V_gurobi']:.6f} | {row['V_pypower']:.6f} | " f"{row['Angle_gurobi']:.6f} | {row['Angle_pypower']:.6f}") # 打印发电机结果 if not gen_comp.empty: print("\n发电机结果:") print(f"{'母线':<5} | {'Pg(Gurobi)':<12} | {'Pg(PyPower)':<12} | {'Qg(Gurobi)':<12} | {'Qg(PyPower)':<12}") for _, row in gen_comp.iterrows(): print(f"{int(row['Gen']):<5} | {row['P_gurobi']:.6f} | {row['P_pypower']:.6f} | " f"{row['Q_gurobi']:.6f} | {row['Q_pypower']:.6f}") # 保存结果到CSV if not bus_comp.empty: bus_comp.to_csv(f'{case}_bus_comparison.csv', index=False) if not gen_comp.empty: gen_comp.to_csv(f'{case}_gen_comparison.csv', index=False) # 可视化结果 if not bus_comp.empty and not gen_comp.empty: try: plot_comparison_results(bus_comp, gen_comp, case) # 打印最大差异 print(f"\n最大电压差异: {bus_comp['V_diff'].max():.6f} p.u.") print(f"最大角度差异: {bus_comp['Angle_diff'].max():.6f} 度") print(f"最大有功差异: {gen_comp['P_diff'].max():.6f} MW") print(f"最大无功差异: {gen_comp['Q_diff'].max():.6f} MVar") except Exception as e: print(f"可视化失败: {str(e)}") 这是我的代码,出现了不能使用cos的报错
最新发布
07-24
我正在arcmap里运行Python代码求年均温度和年均kndvi的相关性分析,以下是使用代码和报错,Python版本是2.7.14,arcmap版本是10.6,请帮我修改代码# 计算相关系数(保持原有计算逻辑) ... cov_sum = Raster(os.path.join(output_gdb, "cov_sum")) ... k_std = Raster(os.path.join(output_gdb, "k_std")) ... t_std = Raster(os.path.join(output_gdb, "t_std")) ... ... r = cov_sum / (23 * k_std * t_std) ... r = Con(r < -1, -1, Con(r > 1, 1, r)) # 强制限制值域[-1,1] ... r.save(os.path.join(output_gdb, "k_t_correlation")) ... ... # === 关键修改:使用栅格属性获取方法 === ... # 先强制计算统计值(避免统计信息未生成) ... arcpy.CalculateStatistics_management( ... in_raster=os.path.join(output_gdb, "k_t_correlation"), ... skip_existing=False # 强制重新计算 ... ) ... ... # 获取最小值最大值(正确方法) ... r_min = arcpy.GetRasterProperties_management( ... in_raster=os.path.join(output_gdb, "k_t_correlation"), ... property_type="MINIMUM" ... ).getOutput(0) ... ... r_max = arcpy.GetRasterProperties_management( ... in_raster=os.path.join(output_gdb, "k_t_correlation"), ... property_type="MAXIMUM" ... ).getOutput(0) ... ... # 打印结果(保留两位小数) ... safe_print(u"相关系数计算完成!值范围:{:.2f} ~ {:.2f}".format(float(r_min), float(r_max))) ... Runtime error Traceback (most recent call last): File "<string>", line 14, in <module> TypeError: CalculateStatistics() got an unexpected keyword argument 'in_raster'
03-28
<think>好,我需要帮用户解决他们在ArcMap中使用Python代码计算年均温度和年均kNDVI相关性时遇到的错误。首先,用户提供的代码在运行到arcpy.CalculateStatistics_management时出现了TypeError,提示参数in_raster是未预期的关键字参数。这说明该函数在ArcGIS 10.6的Python 2.7环境中不接受in_raster这个参数名。 首先,我应该回忆一下arcpy模块中CalculateStatistics函数的参数命名。根据ArcGIS 10.6的文档,这个函数的参数名称可能不是in_raster,而是直接作为位置参数传入,不需要参数名。例如,正确的调用方式可能是直接传递栅格路径,而不是使用关键字参数。因此,用户代码中的in_raster=os.path.join(...)可能应该改为直接传递路径。 接下来,我需要检查用户代码的其他部分是否有潜在问题。例如,Raster对象的创建是否正确,路径是否正确,以及栅格计算部分是否有逻辑错误。但根据错误信息,问题主要集中在CalculateStatistics_management的参数使用上。 另外,用户提到Python版本是2.7.14,ArcMap版本是10.6。ArcGIS 10.6对应的ArcPy版本可能有一些特定的函数参数要求,可能与新版本不同。例如,某些函数在新版本中可能允许关键字参数,但旧版本中需要位置参数。因此,正确的做法是移除in_raster=和skip_existing=这样的关键字参数,改为按位置传递参数。 此外,用户代码中的skip_existing=False是否正确?在ArcGIS中,CalculateStatistics_management的参数是否有这个选项?可能需要注意参数顺序,例如第一个参数是栅格路径,第二个可能是x_skip_factor,第三个是y_skip_factor,第四个是skip_existing。但根据文档,参数可能需要按位置传递,而不是关键字。 接下来,我需要修改CalculateStatistics_management的调用方式,去掉关键字参数,直接传递参数值。例如,改为: arcpy.CalculateStatistics_management(os.path.join(output_gdb, "k_t_correlation"), 1, 1, False) 其中,1,1可能对应x和y的skip factor,这里用户可能需要根据实际情况调整,但用户原意可能是强制重新计算统计信息,所以skip_existing=False是否正确?在ArcGIS 10.6中,这个参数的默认值可能不同,或者参数顺序不同,需要查阅文档确认。 另外,用户代码中的Raster计算部分是否正确?例如,cov_sum、k_std、t_std是否已经正确生成?这部分用户没有提到错误,可能问题只出现在CalculateStatistics这一步。 最后,确保所有路径正确,栅格存在,并且有写入权限。用户提到的输出路径是否正确,output_gdb是否有效?虽然用户没有报告路径错误,但这也是潜在的问题点之一。 总结,修改的关键点是将CalculateStatistics_management的参数改为位置参数,移除in_raster和skip_existing的关键字,可能调整参数顺序。同时,确保其他部分如栅格计算和保存正确无误。</think>### 错误分析与解决方案 根据报错信息 `TypeError: CalculateStatistics() got an unexpected keyword argument 'in_raster'`,问题出在 **参数命名方式不兼容** ArcGIS 10.6 的 `CalculateStatistics_management` 函数。以下是修改后的代码和详细说明: --- ### **修改后的代码** ```python # 计算相关系数(保持原有计算逻辑) cov_sum = Raster(os.path.join(output_gdb, "cov_sum")) k_std = Raster(os.path.join(output_gdb, "k_std")) t_std = Raster(os.path.join(output_gdb, "t_std")) r = cov_sum / (23 * k_std * t_std) r = Con(r < -1, -1, Con(r > 1, 1, r)) # 强制限制值域[-1,1] r.save(os.path.join(output_gdb, "k_t_correlation")) # === 关键修改:调整参数传递方式 === # 使用位置参数而非关键字参数(ArcGIS 10.6 兼容性) arcpy.CalculateStatistics_management( os.path.join(output_gdb, "k_t_correlation"), # 栅格路径 1, # x_skip_factor (默认值) 1, # y_skip_factor (默认值) False # skip_existing=False 强制重新计算统计值 ) # 获取最小值最大值(正确方法) r_min = arcpy.GetRasterProperties_management( os.path.join(output_gdb, "k_t_correlation"), "MINIMUM" ).getOutput(0) r_max = arcpy.GetRasterProperties_management( os.path.join(output_gdb, "k_t_correlation"), "MAXIMUM" ).getOutput(0) # 打印结果(保留两位小数) safe_print(u"相关系数计算完成!值范围:{:.2f} ~ {:.2f}".format(float(r_min), float(r_max))) ``` --- ### **修改说明** 1. **参数命名兼容性** ArcGIS 10.6 的 `CalculateStatistics_management` 函数不支持 `in_raster` 和 `skip_existing` 作为关键字参数。修改为 **按位置传递参数**,顺序为: - `in_raster`: 栅格路径 - `x_skip_factor`: 默认设为 `1` - `y_skip_factor`: 默认设为 `1` - `skip_existing`: 设为 `False` 强制覆盖已有统计值 2. **统计计算必要性** `CalculateStatistics` 确保栅格具有统计信息(用于后续的 `GetRasterProperties`)。若跳过此步骤,可能导致获取的最小值/最大值不准确。 3. **其他代码逻辑** - 相关系数公式 $r = \frac{\text{cov\_sum}}{23 \times k\_std \times t\_std}$ 保留原逻辑。 - 使用 `Con()` 函数强制限制值域为 $[-1, 1]$,避免异常值。 --- ### **注意事项** 1. **环境检查** - 确保 `output_gdb` 存在且可写入。 - 输入栅格 (`cov_sum`, `k_std`, `t_std`) 需已正确生成且无空值。 2. **扩展模块加载** 代码开头需加载 `arcpy` 和 `Spatial Analyst` 扩展: ```python import arcpy from arcpy.sa import * arcpy.CheckOutExtension("Spatial") ``` 3. **Python 2.7 兼容性** - 确保字符串路径使用英文(避免中文字符路径问题)。 - `safe_print` 函数需自定义(或替换为 `print`)。 --- 如果仍有报错,请提供完整的代码和错误堆栈信息,以便进一步诊断。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值