
视频行人重识别
文章平均质量分 94
Video-based Person Re-Identification 相关论文阅读
该任务主要是为了从非重叠摄像机的视频中重新识别出特定的人。由于视频的特性,和基于图片的reid任务相比,蕴含着丰富的时序信息。因此主要都是着手于如何有效地挖掘时间、 空间特性。
反卷三明治
路漫漫其修远兮,吾将上下而求索
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
《STA: Spatial-Temporal Attention for Large-Scale Video-Based Person Re-Identification》
提出了一种新的时空注意(STA)方法来解决视频中大规模的人物再识别任务。STA在空间和时间两个维度上充分利用了一个目标人的那些判别性部分,通过帧间正则化得到一个二维注意力评分矩阵来衡量空间部分在不同帧间的重要性。因此,根据挖掘的二维注意力评分矩阵指导的加权和操作,可以生成更鲁棒的剪辑级特征表示。在MARS和DukeMTMCVideoReID两个大规模数据集上进行了实验。mAP在MARS上达到87.7%原创 2024-03-15 15:32:20 · 1182 阅读 · 1 评论 -
《Prototypical Contrastive Learning-based CLIP Fine-tuning for Object Re-identification》
在这项工作中,我们首先分析了提示学习在CLIP-ReID中的作用,并确定了其局限性。基于我们的研究,我们提出了一种简单而有效的方法来适应被监督对象的Re-ID。我们的方法使用典型的对比学习(PCL)损失直接微调CLIP的图像编码器,消除了对快速学习的需要。原创 2024-03-10 18:12:59 · 1416 阅读 · 1 评论 -
《CLIP-ReID Exploiting Vision-Language Model for Image Re-identification without Concrete Text Label》
像CLIP这样的预训练视觉语言模型最近在包括图像分类和分割在内的各种下游任务上显示出优越的性能。然而,在细粒度图像再识别(ReID)中,标签是索引,缺乏具体的文本描述。因此,如何将这些模型应用于这些任务还有待确定。提出了一个两阶段的策略,以促进更好的视觉表现。关键思想是通过为每个ID提供一组可学习的文本标记,充分利用CLIP中的跨模态描述能力,并将其提供给文本编码器以形成模糊描述。第一个训练阶段,只有文本标记通过计算的对比损失从头开始优化。在第二阶段,为微调图像编码器提供了约束原创 2024-03-10 15:28:11 · 2332 阅读 · 1 评论