
AI应用
文章平均质量分 79
分享AI应用的实现逻辑及背后技巧
胖头鱼爱算法
AI从业者,负责过多模态大模型、超大规模分类、聚类、检索等任务;发表过10+ CCF A/B等论文
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
MinerU:文档解析神器,实地测评
MinerU是一款由上海人工智能实验室 OpenDataLab 团队开源的一款高质量数据提取工具,评测其在多栏表格、代码、公式、多栏PDF、印刷体方面的识别能力。原创 2025-07-23 10:29:21 · 1042 阅读 · 0 评论 -
Dolphin文档解析模型?实测看看,幻觉太严重
该模型的幻觉还是比较严重的,整体不是很可用,还需要进一步迭代更新在多栏表格方面,结构、文字识别得都一般在代码方面,整体效果能接受,但会收到python的注释符号的影响在公式方面,会生成不存在的latex符号在多栏识别方面,能按顺序输出不同栏目在印刷体识别方面,效果整体还是不错的以上评测是在笔者挑选的数据上进行的,以上数据仅供参考。若希望将Dolphin用于自身场景,建议用自身场景数据进行实测对比。原创 2025-07-15 08:38:16 · 610 阅读 · 1 评论 -
MonkeyOCR?实测PDF解析效果
PDF解析有两种方法,基于pipeline的方法和基于端到端的方法。基于pipeline的方法将PDF解析任务拆解为多个小任务,针对性得优化每个小任务,但容易受到错误累积的影响。比如常拆解的任务流程:布局识别、区域分割、文本识别、表格识别、公式识别、结构重组,每个任务使用独立模型,这种设计哲学累积早期阶段的错误,后面任务的的模型再强也无法弥补。基于端到端的方法直接从PDF文档推断出markdown解析结果,缺乏中间过程,不具备可解释性;一般采用多模态大模型实现,需要的计算资源较大。原创 2025-07-08 08:30:00 · 1348 阅读 · 0 评论 -
【PP-StructureV3】名列前茅的开源PDF解析算法?实测看看
PP-StructureV3原创 2025-06-29 17:47:41 · 1304 阅读 · 0 评论 -
智能体框架——lagent初探
上述的解析整体还是比较简单,难以直观、全面地把lagent呈现给大家,后续可能有专题,一步步讲解。给大家讲解的过程,也是我自己学习的过程。建议采用硅基流动+[internlm/internlm2_5-7b-chat](对输入做前处理,具体前处理方法依任务而定。对输出做后处理,例如上述python代码执行的例子中,对执行过程做检查。,将会话记录、当前会话、系统prompt等信息合并起来。第二步更新agent的memory(会话记录),添加。是所有动作的基类,用于执行各种各样的任务。有两个类较为重要,一个是。原创 2025-01-07 16:16:44 · 1073 阅读 · 0 评论 -
AI搜索之问题分解 智谱清言、Felo、360 AI搜索、mindsearch
子问题分解是AI搜索的一个较核心功能,在大多数AI搜索应用中都有体现。Mindsearch借助lagent智能体框架,完成了子问题分解的初步实现,具备较强的借鉴意义。但mindsearch和lagent的代码耦合程度太高,较难自定义,也是在实现层面需要注意的问题。最令人震惊的是,360 AI搜索居然有广告,可谓是AI搜索商业化排头兵!!!原创 2024-12-19 09:13:59 · 1844 阅读 · 1 评论 -
通义千问上线类o1模型——QwQ-32B-Preview
国产又来个推理模型——通义千问的QwQ-32B-Preview到目前为止,共有4个国产推理模型。原创 2024-11-28 11:41:02 · 674 阅读 · 0 评论 -
DeepSeek上线类o1模型——DeepSeek-R1-Lite
2024年11月20日,DeepSeek全新研发的推理模型 DeepSeek-R1-Lite 预览版正式上线。可登录官方网页 (chat.deepseek.com),开启与 R1-Lite 的对话体验。该模型采用强化学习训练,推理过程包含大量反思和验证,思维链长度可达数万字。该系列模型在数学、代码以及各种复杂逻辑推理任务上,取得了媲美 o1-preview 的推理效果,原创 2024-11-20 21:39:28 · 2774 阅读 · 0 评论 -
LLM试用-让Kimi、智谱、阿里通义、腾讯元宝、字节豆包、讯飞星火输出system prompt
做一个简单小实验,让一些商用的LLM输出自己的system prompt原创 2024-10-10 13:06:34 · 1281 阅读 · 0 评论 -
RAG的文档拆分策略
当前(20240925)的时间节点下,效果比较好的文档拆分策略为CharacterTextSplitter+ParentDocumentRetriever,能够较好得协调检索的精度和LLM的效果。原创 2024-09-25 11:52:24 · 1225 阅读 · 0 评论