空间滤波(基于opencv)

空间滤波是图像处理中的一种技术,通过在图像的每个像素周围应用滤波器,改变其值来实现图像的平滑、锐化或边缘检测等效果。图像的线性空间滤波是指图像与滤波器核进行卷积操作。常见的空间滤波器包括均值滤波器、高斯滤波器、Sobel滤波器等,用于去噪、增强图像细节或突出边缘特征。空间滤波广泛应用于图像去噪、特征提取和质量改善等领域。

一.常见噪声的概率密度函数

1.高斯噪声

p(z)=\frac{1}{\sqrt{2\pi }\sigma }e^{-(z-\bar{z})/2\sigma ^{2}}

均值是 \bar{z},方差是\sigma

z值在区间\bar{z}\pm \sigma内的概率是0.68,z值在区间\bar{z}\pm 2\sigma内的概率是0.95。

2.Rayleigh噪声

p(z)=\left\{\begin{matrix} \frac{2}{b}(z-a)e^{-(z-a)^{2}/b} ,z\geqslant a\\0 ,z< a\end{matrix}\right.

均值是\bar{z}=a+\sqrt{\pi b/4},方差为\sigma ^{2}=\frac{b(4-\pi )}{4}

Rayleigh噪声的曲线特点是基本形状右偏。Rayleigh噪声的概率密度形式对整体趋势倾斜的颜色直方图建模非常有效。

3.Gamma噪声

p(z)=\left\{\begin{matrix} \frac{a^{b}z^{b-1}}{(b-1)!}e^{-az} ,z\geqslant 0\\0 ,z< a\end{matrix}\right.

均值是\bar{z}=\frac{b}{a},方差是\sigma ^{2}=\frac{b}{a^{2}}

4.指数噪声

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值