YOLOv5改进 | 检测头篇 | 独创FRMHead效果秒杀v5和RT-DETR检测头

本文介绍了FRMHead,一种独创的目标检测头,效果优于YOLOv5和RT-DETR。通过详细解释FRMHead的DFL、PCRC和FRM组件,以及提供添加FRMHead到YOLOv5的步骤,实现了mAP和recall的显著提升。文章还提供了核心代码和yaml配置文件,帮助读者实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一、本文介绍

本文给大家带来的改进机制是,FRMHead检测头 ,其是由我独家创新,全网首发,效果秒杀之前的其它检测头,将其替换我们的YOLOv5的检测头,mAP提高百分之二十以上接近百分之三十,recall提高百分之二十,mAP50-95提高也接近百分之二十可以说其效果是十分有效的,大家拿到以后可以将其和我发的其它的机制选一个主干一个Neck,做几次实验涨点效果就十分明显,就可以产出一篇论文,大家会发现检测头对于模型的精度提升是非常大的(但是其也是非常的难改的,网络上的关于检测头的改进十分少),同时该检测头有二次创新的机会后期我也会发布在群里大家可以关注一下。

欢迎大家订阅我的专栏一起学习YOLO!

### 改进RTDETR模型中Focal Loss的策略 为了优化RTDETR模型中的Focal Loss性能并提升检测效果,可以考虑以下几个方面: #### 1. 动态调整损失权重 通过引入动态卷积注意力机制或自适应阈值焦点损失(ATFL),能够有效降低易分类样本对总损失的影响,同时增强对难分类样本的关注度。这种方法特别适用于解决类别不平衡问题[^2]。 #### 2. 使用分布式的焦点损失(DFL) 借鉴YOLOv8改进版本中的FRMHead设计思路,可以通过集成模块实现分布式焦点损失(DFL)。具体而言,在检测头部分加入一个额外的卷积层来处理输入特征图,并将其映射到更合适的概率空间,从而改善回归分支的表现[^3]。 以下是基于PyTorch框架的一个简单代码示例,展示了如何修改传统的Focal Loss定义以支持上述特性: ```python import torch import torch.nn as nn import torch.nn.functional as F class ATFLoss(nn.Module): def __init__(self, alpha=0.25, gamma=2.0, reduction='mean'): super(ATFLoss, self).__init__() self.alpha = alpha self.gamma = gamma self.reduction = reduction def forward(self, inputs, targets): ce_loss = F.cross_entropy(inputs, targets, reduction="none") pt = torch.exp(-ce_loss) atf_weight = (1 - pt)**self.gamma * self.alpha loss = atf_weight * ce_loss if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: return loss ``` 此代码实现了带有α平衡因子γ调制项的标准形式下的二元交叉熵版Focal Loss扩展版本即Adaptive Threshold Focus Loss(简称ATFL). #### 3. 数据增强与正则化技巧 除了直接作用于损失函数外,还可以利用数据增广手段如MixUp,CutOut等方式增加训练集多样性;或者采用DropBlock等随机失活操作防止过拟合现象发生,间接促进整体收敛质量提高[^1]。 --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值