YOLOv11改进 | 添加注意力篇 | 结合2024最新Mamba注意力机制MLLA助力yolov11有效涨点含二次创新C2PSA(全网独家首发改进)

一、本文介绍

本文给大家带来的改进机制是结合号称超越Transformer架构的Mamba架构的最新注意力机制MLLA,本文将其和我们YOLOv11进行结合,MLLA(Mamba-Like Linear Attention)的原理是通过将Mamba模型的一些核心设计融入线性注意力机制,从而提升模型的性能。具体来说,MLLA主要整合了Mamba中的“忘记门”(forget gate)和模块设计(block design)这两个关键因素,同时MLLA通过使用位置编码(RoPE)来替代忘记门,从而在保持并行计算和快速推理速度的同时,提供必要的位置信息。这使得MLLA在处理非自回归的视觉任务时更加有效 ,本文内容为我独家整理全网首发。

  专栏回顾:YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备


目录

  一、本文介绍

二、原理介绍

三、核心代码

四、手把手教你添加MLLA

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

4.5 修改五 

五、MLLA的yaml文件和运行记录

5.1 MLLA的yaml文件1

5.2 MLLA的yaml文件2

5.3 训练代码 

### 关于YOLOv11和C2PSA源码实现 在YOLOv11架构中,为了提升模型性能并优化计算效率,引入了多种改进措施。特别是在注意力机制方面,使用了OutlookAttention模块来替代传统的C2PSA模块中的Attention部分[^2]。 对于具体的代码实现细节,在处理C2PSA替换的过程中,主要集中在定义新的注意力层以及将其集成到整体网络结构之中。下面是一个简化版的Python伪代码片段展示如何构建这样的自定义层: ```python import torch.nn as nn class OutlookAttention(nn.Module): def __init__(self, dim_in, dim_out=None, kernel_size=3, padding=1, stride=1, num_heads=8): super().__init__() self.dim_out = dim_out or dim_in # 定义必要的参数与子模块... def forward(self, x): # 实现前向传播逻辑... def replace_c2psa_with_outlookattention(model): for name, module in model.named_children(): if isinstance(module, C2PSAModule): # 假设这是原始使用的类名 new_module = OutlookAttention(...) # 使用实际参数初始化新实例 setattr(model, name, new_module) elif hasattr(module, 'children') and len(list(module.children())) > 0: replace_c2psa_with_outlookattention(module) # 应用于整个YOLOv11模型对象model上 replace_c2psa_with_outlookattention(your_yolov11_model_instance) ``` 上述代码展示了如何创建一个新的`OutlookAttention`类,并提供了一个函数用来遍历给定的神经网络模型,找到所有的C2PSA组件并将它们替换为基于Outlook Attention的新版本。 需要注意的是,这里给出的例子仅作为概念验证用途;真实项目里可能还需要考虑更多因素如输入输出维度匹配等问题。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值