
人工智能
文章平均质量分 91
人工智能学习之路
Thomas Kant
7年IT从业者,测试开发工程师,AI时代,研究人工智能技术,分享所想所得,你我共勉~
展开
-
2025年全面的AI学习计划
2025年全面的AI学习计划原创 2025-01-04 16:15:28 · 3307 阅读 · 0 评论 -
AI:人工智能
人工智能(Artificial Intelligence,AI)领域是研究、开发和应用使计算机模拟、扩展和辅助人类智能的技术。原创 2023-12-13 21:47:40 · 1195 阅读 · 0 评论 -
Sklearn 机器学习 缺失值处理 获取填充失值的统计值
使用Scikit-learn处理缺失值的多种方法及提取填充统计信息的技巧。原创 2025-06-09 09:00:00 · 216 阅读 · 0 评论 -
Sklearn 机器学习 缺失值处理 填充数据列的缺失值
使用Scikit-learn处理数据缺失值的完整指南,多种有效的缺失值处理方法。原创 2025-06-07 09:00:00 · 443 阅读 · 0 评论 -
Sklearn 机器学习 缺失值处理 检测数据每列的缺失值
使用Scikit-learn和Pandas检测与处理缺失值的完整方法。原创 2025-06-05 09:00:00 · 1112 阅读 · 0 评论 -
AI:Keras 实现多元线性回归
Keras 实现多元线性回归。原创 2025-06-03 09:00:00 · 902 阅读 · 0 评论 -
AI:使用 Keras 实现线性回归模型
如何使用 TensorFlow Keras 实现线性回归,并结合图表进行训练与预测结果的可视化。原创 2025-06-01 09:00:00 · 467 阅读 · 0 评论 -
AI:Keras简介及安装教程
系统介绍 Keras 核心特点、使用与部署、兼容的 Python 版本,安装。原创 2025-05-30 09:00:00 · 1086 阅读 · 0 评论 -
AI:热门AI办公工具
数据处理AI vs 绘图AI工具详解。原创 2025-05-28 09:00:00 · 1863 阅读 · 0 评论 -
AI:热门 AI 编程工具
深度解析三款主流 AI 编程工具:Cursor、bolt.new、Devv.ai,并对比其他热门 AI 编程助手。原创 2025-05-26 09:00:00 · 1719 阅读 · 0 评论 -
AI:七大主流AI聊天机器人
深度对比了七款主流AI聊天机器人:DeepSeek、豆包、海螺AI、Kimi、通义千问、ChatGPT和Claude,涵盖其功能亮点、支持平台、开发商背景及使用场景。原创 2025-05-24 09:00:00 · 699 阅读 · 0 评论 -
AI:RAG是模型幻觉的克星?
系统讲解 RAG 的工作原理、优劣对比、幻觉应对机制,并介绍腾讯在该领域的技术实践。原创 2025-05-22 09:00:00 · 1331 阅读 · 0 评论 -
AI:NLP 中文解析
了解中文 NLP 的核心任务、关键工具及典型应用场景,配合代码示例与可落地工具,助你掌握中文解析的核心技能。原创 2025-05-20 09:00:00 · 1005 阅读 · 0 评论 -
AI:初识NLP
自然语言处理(Natural Language Processing,简称 NLP)是人工智能(AI)和计算语言学的重要分支,旨在实现计算机对自然语言的“理解”、“生成”、“分析”与“交互”。原创 2025-05-16 09:00:00 · 1205 阅读 · 0 评论 -
AI:变分自编码器(VAE)
变分自编码器(VAE)是一种结合变分推断与神经网络的生成模型。原创 2025-05-13 09:00:00 · 1523 阅读 · 0 评论 -
AI:生成对抗网络(GAN)
生成对抗网络(GAN)由 Ian Goodfellow 等人在 2014 年提出,是一种通过对抗训练实现数据生成的深度学习模型架构。原创 2025-05-10 09:00:00 · 1383 阅读 · 0 评论 -
AI:机器学习之无监督学习
无监督学习(Unsupervised Learning)是机器学习的重要分支,它不依赖于人工标签,通过自身“感知”数据结构来发现潜在模式。原创 2025-05-02 09:00:00 · 914 阅读 · 0 评论 -
AI:机器学习之监督学习
监督学习(Supervised Learning)是一种典型的机器学习范式,通过“有标签的数据”训练模型,学习从输入 X 到输出 Y 的映射关系。原创 2025-04-30 09:00:00 · 654 阅读 · 0 评论 -
AI:详解MCP与A2A协议
Agent-to-Agent(A2A)协议,旨在解决 AI 智能体之间的通信与协作问题。与此同时,Model Context Protocol( MCP)为 AI 智能体提供了与外部工具和数据源交互的标准。原创 2025-04-24 09:00:00 · 1563 阅读 · 0 评论 -
AI:初识 TensorFlow
Google 出品的深度学习框架TensorFlow,让你用最轻松的方式打开 AI 大门。原创 2025-04-22 09:00:00 · 644 阅读 · 0 评论 -
AI:给你讲明白AIGC,别再一知半解
AIGC(AI Generated Content,人工智能生成内容)🎨,就是这波浪潮中的“超级网红”!原创 2025-04-20 09:00:00 · 754 阅读 · 0 评论 -
AI:大模型蒸馏全解析
模型蒸馏(Knowledge Distillation),通过教师模型(Teacher)训练学生模型(Student),让后者学习前者的知识、思维方式、输出风格,从而获得“以小博大”的能力。原创 2025-04-18 09:00:00 · 905 阅读 · 0 评论 -
AI:线性代数之向量
向量就像一个有方向和大小的箭头。原创 2025-04-13 09:00:00 · 969 阅读 · 0 评论 -
AI:深度学习之循环神经网络(RNN)
循环神经网络(Recurrent Neural Network, RNN)是处理序列数据的“记忆大师”🧠。原创 2025-04-12 09:00:00 · 1214 阅读 · 0 评论 -
AI:深度学习之卷积神经网络(CNN)
卷积神经网络(Convolutional Neural Network, CNN)是深度学习中的一种前馈神经网络,主要应用于图像识别、语音处理、自然语言处理等任务中。原创 2025-04-11 09:00:00 · 647 阅读 · 0 评论 -
AI:深度学习之神经网络
神经网络,顾名思义,是模仿人类大脑工作方式的一种计算模型。原创 2025-04-10 09:00:00 · 1909 阅读 · 0 评论 -
AI:支持向量机(SVM)
把SVM想象成建一座最宽的"隔离带",支持向量就是隔离带边缘的"护栏",决定了隔离带的宽度和位置。原创 2025-04-08 17:30:00 · 1316 阅读 · 0 评论 -
AI:决策树、决策森林与随机森林
决策树(Decision Tree,简称DT),随机森林(Random Forest,简称RF)原创 2025-04-07 18:30:00 · 1147 阅读 · 0 评论 -
AI:机器学习模型-逻辑回归
逻辑回归一种可预测概率的回归模型。原创 2025-04-02 14:57:30 · 710 阅读 · 0 评论 -
AI:机器学习模型-线性回归
线性回归是一种统计方法,用于发现变量之间的关系。在机器学习背景下,线性回归可找出特征与标签之间的关系。原创 2025-04-02 13:48:50 · 964 阅读 · 0 评论 -
AI:Machine Learning & Data Science
人工智能、机器学习、深度学习和数据科学的关系原创 2025-03-14 17:30:03 · 1088 阅读 · 0 评论 -
AI:大语言模型训练
监督式微调是指在一个预训练模型的基础上,使用带有标签的数据集对其进行进一步训练,以适应特定的下游任务。这个过程通常在预训练模型已经学习了通用特征和表征之后进行。原创 2025-01-11 16:18:11 · 1076 阅读 · 0 评论 -
AI:人工智能的发展史
通用目的:AGI将能够执行任何人类能够执行的智力任务。它不会局限于特定的领域或任务集。学习和适应:AGI将能够在没有明确编程的情况下学习新任务,并能将其知识和技能应用于新情况。理解:AGI将具有与人类相似的理解形式,使其能够理解复杂和抽象的概念。原创 2025-01-11 16:00:24 · 1425 阅读 · 0 评论 -
AI:人工智能产业
随着我国经济由高速增长阶段向高质量发展阶段转变,人工智能产业作为新一轮科技革命和产业变革的核心驱动力,得到了国家和地方政府的高度重视。总之,人工智能产业具有巨大的发展潜力,但同时也需要关注技术瓶颈、数据安全等挑战。这些技术的应用不仅提高了人工智能产业的技术含量,还为产业发展提供了源源不断的创新驱动力。:人工智能技术在各行各业的广泛应用,如医疗、教育、工业、交通等,极大地满足了社会对智能化服务的需求。:人工智能技术将在医疗、教育、工业、交通等多个领域得到广泛应用,为各行业带来效率提升和新的经济增长点。原创 2023-12-13 21:50:46 · 871 阅读 · 1 评论 -
AI:大模型技术
GPTs(生成式预训练模型)是一种人工智能技术,它通过大规模的无监督预训练和有监督微调,可以学习和理解自然语言中的语法、语义和上下文信息,从而实现各种自然语言处理任务,如文本生成、机器翻译、情感分析等。同时,GPTs模型也可以通过插件的方式,扩展其原有的功能,实现更复杂的应用场景。Agent + Function Calling 是一种编程范式,其中"Agent"是一个可以在某个环境下自主行动以实现某些目标的实体,而"Function Calling"是编程中的一种基本操作,用于调用函数以执行特定的任务。原创 2023-12-09 20:12:40 · 1725 阅读 · 0 评论 -
AI:大语言模型LLM
然而,由于RLHF方法的一些局限性,制定一套人工标准准则来确保其安全、可靠和有效地应用变得至关重要。这些准则可以帮助研究人员和开发者更好地理解、改进和应用RLHF方法,以降低潜在的风险和负面影响。总之,大语言模型的评价涉及多个方面,需要综合考虑其在语言理解、生成、逻辑推理、常识应用、语言风格、情感表达、跨语言和跨领域等方面的表现,以及模型的大小、计算效率和伦理道德方面的问题。遵循这些人工标准准则,研究人员和开发者可以更安全、可靠地应用RLHF方法,以促进人工智能技术的发展和普及。原创 2023-12-05 20:37:21 · 1503 阅读 · 0 评论 -
AI:大语言模型训练方法 - 机器学习
通过创新的方法和技术,如模型无关的元学习(model-agnostic meta-learning,MAML)和原型网络(prototypical networks),研究人员和工程师现在能够在更少的样本和更短的时间内训练出更有效的模型。In-context learning在NLP领域十分火热,因为它能够提高模型在大模型(如GPT3,Instruction GPT,ChatGPT)上的性能,使得这些模型更加高效地处理各种任务。这种方法可以帮助模型理解上下文,进行深入的推理,从而做出准确的预测。原创 2023-12-05 20:38:16 · 2416 阅读 · 1 评论