LangChain与Embeddings技术:构建高效RAG系统的核心组件

目录

LangChain简介

LangChain作为当前最热门的开源RAG(Retrieval-Augmented Generation,检索增强生成)框架,正在重塑我们处理非结构化数据的方式。在RAG框架中,检索环节至关重要,而Embeddings技术则是实现高效检索的核心组件之一。

RAG框架的工作流程通常包括:

  1. 文本预处理与分块
  2. 通过Embedding模型转换为向量表示
  3. 存储到向量数据库
  4. 查询时进行相似性检索
  5. 将检索结果输入生成模型

LangChain的独特价值在于它提供了标准化的接口,使开发者能够灵活组合不同的嵌入模型、向量数据库和LLM,构建端到端的智能应用。

Embeddings技术概述

Embedding技术通过将离散的符号(如单词、句子)映射到连续的向量空间,使计算机能够理解和处理语义信息。这种表示方法具有几个关键优势:

  1. 语义保留:语义相似的项在向量空间中距离相近
  2. 维度压缩:将高维稀疏表示转换为低维稠密向量
  3. 跨模态能力:同一空间可嵌入文本、图像、音频等多种数据类型

现代Embedding模型通常基于深度神经网络,特别是Transformer架构,能够捕捉复杂的上下文关系。

主流Embedding模型比较

模型名称 发布时间 核心特点 典型应用场景
Word2Vec 2013 基于浅层神经网络,CBOW/Skip-Gram架构 词语相似度计算,简单语义分析
GloVe 2014 基于全局词共现统计,结合矩阵分解 需要全局语义信息的任务
FastText 2016 引入子词(subword)概念,处理未登录词 多语言应用,拼写错误容忍
BERT 2018 双向Transformer,上下文相关表示 需要深层语义理解的任务
Sentence-BERT 2019 针对句子级语义优化的BERT变体 语义检索,文本匹配

主流Embedding模型比较图

LangChain中的Embedding集成

LangChain提供了统一的Embedding接口,支持多种后端实现:

from langchain_community.embeddings import (
    HuggingFaceEmbeddings,
    OpenAIEmbeddings,
    CohereEmbeddings
)

# HuggingFace嵌入
hf_embeddings = HuggingFaceEmbeddings(
    model_name="sentence-transformers/all-MiniLM-L6-v2",
    model_kwargs={
   'device': 'cpu'},
    encode_kwargs={
   'normalize_embeddings': False}
)

# OpenAI嵌入
openai_embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")

# Cohere嵌入
cohere_embeddings = CohereEmbeddings(model="embed-english-v2.0")

系统架构示意图
关键配置参数:

  • model_name:指定预训练模型
  • model_kwargs:模型推理参数(如设备选择)
  • encode_kwargs:编码过程参数(如归一化)

实践案例:构建本地知识问答系统

系统架构

  1. 数据层:本地文本文件存储知识库
  2. 嵌入层:Sentence-Transformers处理文本
  3. 存储层:Chroma向量数据库
  4. 应用层:LangChain编排处理流程

# -*- coding: utf-8 -*-
"""
LangChain RAG完整实现
基于本地文档构建问答系统
使用sentence-transformers/all-MiniLM-L6-v2嵌入模型
Chroma向量数据库存储
"""

import os
from dotenv import load_dotenv
from typing import List, Dict, Any

# 加载环境变量
load_dotenv()

# 设置国内镜像源(加速下载)
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

# 1. 导入所需库
from langchain_core.prompts import ChatPromptTemplate
from langchain_core
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值