卷积神经网络中十大拍案叫绝的操作(转载)

本文探讨了尽管Depth-Wise卷积的FLOPs较少,但由于其高IO读取需求,导致在实际运行中速度反而较慢的现象。文中解释了在相同FLOPs条件下,Depth-Wise卷积的IO读取次数远高于常规卷积,使得即使能够放置更大的batch,GPU的运算能力也无法得到充分利用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接:https://zhuanlan.zhihu.com/p/28749411

补充

  • 为什么depth-wise卷积FLOPs更少但是推理速度慢?
    简单来说,depth-wise卷积的FLOPs更少没错,但是在相同的FLOPs条件下,depth-wise卷积需要的IO读取次数是普通卷积的100倍,因此,由于depth-wise卷积的小尺寸,相同的显存下,我们能放更大的batch来让GPU跑满,但是此时速度的瓶颈已经从计算变成了IO。自然desired小尺寸卷积应该有的快速的特性,也无法实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值