知识图谱+大模型是怎么样的?一篇文章让你通俗易懂理解!

01 知识图谱与大模型的特点和互补性

知识图谱的独特性:

知识组织:它通过实体及其关联关系构建的三元组结构,系统性地呈现了知识体系的拓扑形态。

数据可信度:知识图谱整合的信息资源通常具备严格的验证机制和权威性保障。

图片

解释性:知识图谱的网状表达方式更接近人类思维模式,为知识演绎和因果分析搭建了桥梁。

大模型的优势:

语言理解力:这些系统可以精准解析海量文本数据,展现出优异的语境把握能力及多场景泛化性能。

零样本学习能力:面对NLP领域的各类任务时,即使在训练样本极度匮乏的条件下,仍能实现出色的知识迁移效果。

图片

知识图谱与大模型之间的相互补充:

知识图谱对大规模模型的助力:知识图谱作为结构化知识库,能够为大模型提供准确且可验证的事实依据,显著降低模型生成内容的幻觉现象,并通过可视化知识关联路径增强模型决策的可解释性,使黑箱推理过程变得透明可追溯。

同时,其完善的权限管理框架可集成到大模型系统中,有效解决敏感信息过滤、数据溯源等合规性需求。

大规模模型对知识图谱的贡献:面对知识图谱动态更新和跨领域扩展的需求,大模型展现出强大的小样本适应能力,尤其在关系预测、图谱补全等复杂任务中表现突出。

具体而言,大模型通过语义理解技术可实现非结构化数据的自动化知识抽取,大幅提升图谱构建效率;其海量参数中隐含的常识知识,亦可作为增量学习的优质数据源来优化现有知识体系。

图片

02 大模型增强知识图谱的方式

知识图谱构建的挑战与机遇:

提升知识图谱构建效率:利用大模型的零样本或少样本学习特性,能够快速从非结构化文本中识别实体及其关联关系。

但该方法的效果高度依赖大模型本身的泛化能力,当面对领域专有术语或多跳推理场景时,其识别精度可能出现显著波动。

优化知识图谱的完整性:基于大模型的海量先验知识,可自动补全知识图谱中的缺失节点和边缘关系。通过反向将知识图谱的结构化信息注入大模型训练过程,可显著增强模型的可解释性和逻辑推理能力。

图片

知识图谱推理的强化:

加强知识图谱推理能力: 大模型的引入,使得结合通用知识和知识图谱进行联合推理成为现实。大模型能够解析自然语言文本,并与知识图谱中的知识相结合,助力挖掘推理规则和评估策略。

问答系统的创新: 知识图谱与模型的协同作用为问答系统带来新机遇。通过微调技术或直接应用大模型,可以显著提升知识图谱问答系统的性能和解释力。

图片

大模型在知识图谱增强中的应用概览:

图片

03 知识图谱增强大模型的方式

提升大模型训练及其实际应用:

优化大模型性能: 在大型模型的预训练过程中,融入知识图谱的结构化知识来构建预训练语料,以此提升模型的自我提升能力。同时,利用嵌入技术将知识图谱整合进大模型,使其能够学习到具体的事实知识。

强化推理能力: 技术如思维链可以通过少量样本的提示来提升大模型在推理任务上的表现,尽管这可能受到某些偏见特征的影响。结合图神经网络与知识图谱的方法,可以进一步升级模型的推理功能。

提升检索效率: 采用检索增强生成等技术,通过接入外部知识向量索引来解决大模型知识更新的问题,从而增强其在处理知识密集型任务时的效能。

增强解释性: 结合知识图谱与大模型,例如使用LMExplainer等工具,能够提供更加全面、透明、易于理解的文本解释,从而提高大模型的可解释性。

图片

知识图谱对大模型强化的综合概述:

图片

04 总结与展望

在图模结合系统中,关键在于建立有效的反馈机制,以动态优化知识图谱与大模型的互动。要点包括:

大模型与知识图谱的互动反馈;

通用型知识图谱的适应性;

知识增强大模型的应用,如 ChatExtract和 AutoKG 工具。

这种协作提升了系统的可靠性、解释性和智能水平。

图片

未来展望

提升大模型性能: 研究将聚焦于如何将高质量知识有效注入大模型,以及优化模型对结构化数据的理解。

改进知识编码: 采用图神经网络等策略,更有效地捕捉知识图谱中的关系和语义

深度融合图模: 结合强化学习,如JointLK和OA-GNN,探索更高效的交互和微调策略。

减少幻觉现象: 利用外部知识图谱等工具,提高大模型的准确性和问题解决能力

图片

可解释性大模型: 研究大模型内部机制,通过知识图谱和图注意网络提升模型解释性,增强用户对决策的信任。

最近两年,大家都可以看到AI的发展有多快,我国超10亿参数的大模型,在短短一年之内,已经超过了100个,现在还在不断的发掘中,时代在瞬息万变,我们又为何不给自己多一个选择,多一个出路,多一个可能呢?

与其在传统行业里停滞不前,不如尝试一下新兴行业,而AI大模型恰恰是这两年的大风口,整体AI领域2025年预计缺口1000万人,其中算法、工程应用类人才需求最为紧迫!

学习AI大模型是一项系统工程,需要时间和持续的努力。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。【点击蓝字获取】

【2025最新】AI大模型全套学习籽料(可白嫖):LLM面试题+AI大模型学习路线+大模型PDF书籍+640套AI大模型报告等等,从入门到进阶再到精通,超全面存下吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值