算法入门:BFS与DFS详解(C++实现)

深度优先与广度优先是算法世界的两大基石,掌握它们如同获得探索算法宇宙的钥匙

一、初识BFS与DFS

什么是BFS和DFS?

  • BFS(广度优先搜索):逐层遍历数据结构,先访问离起点最近的节点

  • DFS(深度优先搜索):沿着分支深入到底部,再回溯探索其他分支

核心应用场景

算法

典型应用场景

BFS

最短路径问题、社交网络好友推荐、连通块分析

DFS

路径存在性判断、拓扑排序、解决回溯问题、图连通性检测

二、BFS算法详解

算法思想

BFS采用分层遍历策略,如同水波纹扩散:

  1. 从起点开始遍历

  2. 先访问所有相邻节点

  3. 再访问相邻节点的相邻节点

  4. 依此类推直到遍历完成

核心数据结构:队列

#include <queue>
queue<int> q; // 创建队列

q.push(startNode); // 起点入队
while (!q.empty()) {
    int cur = q.front(); // 取队首
    q.pop();            // 队首出队
    
    // 处理当前节点
    for (相邻节点) {
        if (节点未访问) {
            q.push(相邻节点); // 新节点入队
        }
    }
}

完整BFS示例:网格最短路径

#include <iostream>
#include <queue>
#include <vector>
using namespace std;

const int N = 100;
int grid[N][N];      // 网格地图
int dist[N][N];      // 存储到每个点的距离
bool visited[N][N];  // 标记数组
int dx[4] = {1, -1, 0, 0}; // 方向数组:上下左右
int dy[4] = {0, 0, 1, -1};

int bfs(int startX, int startY, int endX, int endY, int n, int m) {
    queue<pair<int, int>> q;
    q.push({startX, startY});
    visited[startX][startY] = true;
    dist[startX][startY] = 0;

    while (!q.empty()) {
        auto [x, y] = q.front();
        q.pop();
        
        // 到达终点
        if (x == endX && y == endY) 
            return dist[x][y];
        
        // 遍历四个方向
        for (int i = 0; i < 4; i++) {
            int nx = x + dx[i], ny = y + dy[i];
            
            // 检查边界和访问状态
            if (nx >= 0 && nx < n && ny >= 0 && ny < m && 
                !visited[nx][ny] && grid[nx][ny] != 0) {
                
                visited[nx][ny] = true;
                dist[nx][ny] = dist[x][y] + 1;
                q.push({nx, ny});
            }
        }
    }
    return -1; // 无法到达终点
}

int main() {
    // 示例:5x5网格,1表示可通过,0表示障碍
    int n = 5, m = 5;
    vector<vector<int>> exampleGrid = {
        {1,1,1,1,1},
        {1,0,1,0,1},
        {1,1,1,1,1},
        {1,0,0,0,1},
        {1,1,1,1,1}
    };
    
    // 初始化grid
    for (int i = 0; i < n; i++) 
        for (int j = 0; j < m; j++) 
            grid[i][j] = exampleGrid[i][j];
    
    int result = bfs(0, 0, 4, 4, n, m);
    cout << "最短路径长度: " << result << endl;
    return 0;
}

BFS算法特性

  • 时间复杂度:O(V+E)(V为顶点数,E为边数)

  • 空间复杂度:O(V)

  • 保证找到最短路径(当边权相等时)

  • 不适合深度极大的搜索树

三、DFS算法详解

算法思想

DFS采用深度探索策略:

  1. 从起点选择一条路径深入

  2. 走到尽头后回溯

  3. 选择未探索的分支继续深入

  4. 重复直到所有路径被探索

实现方式:递归 vs 栈

递归实现(推荐):

void dfs(int node, vector<bool>& visited, vector<vector<int>>& graph) {
    visited[node] = true;
    // 处理当前节点
    
    for (int neighbor : graph[node]) {
        if (!visited[neighbor]) {
            dfs(neighbor, visited, graph);
        }
    }
}

栈实现:

void dfs(int start, vector<vector<int>>& graph) {
    stack<int> s;
    vector<bool> visited(graph.size(), false);
    
    s.push(start);
    visited[start] = true;
    
    while (!s.empty()) {
        int cur = s.top();
        s.pop();
        
        // 处理当前节点
        
        for (int neighbor : graph[cur]) {
            if (!visited[neighbor]) {
                visited[neighbor] = true;
                s.push(neighbor);
            }
        }
    }
}

完整DFS示例:图的连通分量

#include <iostream>
#include <vector>
using namespace std;

void dfs(int node, vector<bool>& visited, vector<vector<int>>& graph) {
    visited[node] = true;
    cout << "访问节点: " << node << endl; // 处理当前节点
    
    for (int neighbor : graph[node]) {
        if (!visited[neighbor]) {
            dfs(neighbor, visited, graph);
        }
    }
}

int main() {
    int n = 6; // 节点数量
    vector<vector<int>> graph(n);
    
    // 构建图:无向图示例
    graph[0] = {1, 2};
    graph[1] = {0, 3};
    graph[2] = {0, 3, 4};
    graph[3] = {1, 2, 5};
    graph[4] = {2};
    graph[5] = {3};
    
    vector<bool> visited(n, false);
    int components = 0;
    
    for (int i = 0; i < n; i++) {
        if (!visited[i]) {
            components++;
            cout << "连通分量 #" << components << ":" << endl;
            dfs(i, visited, graph);
        }
    }
    
    cout << "总连通分量数: " << components << endl;
    return 0;
}

DFS算法特性

  • 时间复杂度:O(V+E)

  • 空间复杂度:O(h)(h为最大递归深度)

  • 适合解决连通性问题

  • 可能陷入深度极大的路径

  • 不保证找到最短路径

四、BFS vs DFS 对比指南

特性

BFS

DFS

数据结构

队列

栈/递归

空间占用

高(存储整层节点)

低(仅当前路径)

最优解

保证最短路径(等权图)

不一定

适用场景

最短路径、最近邻居

所有解、连通性检测

实现复杂度

中等

简单

内存风险

宽图可能内存溢出

深图可能栈溢出

选择策略:

  • 求最短路径 → BFS

  • 检查路径存在性 → DFS

  • 图宽度大深度小 → DFS

  • 图深度大宽度小 → BFS

  • 需要所有可能解 → DFS

五、实战应用:岛屿问题

问题描述

给定一个由'1'(陆地)和'0'(水)组成的网格,计算岛屿数量。岛屿由水平或垂直相邻的陆地组成。

BFS解法

int numIslandsBFS(vector<vector<char>>& grid) {
    if (grid.empty()) return 0;
    
    int n = grid.size(), m = grid[0].size();
    int islands = 0;
    int dx[4] = {1, -1, 0, 0};
    int dy[4] = {0, 0, 1, -1};
    
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (grid[i][j] == '1') {
                islands++;
                queue<pair<int, int>> q;
                q.push({i, j});
                grid[i][j] = '0'; // 标记为已访问
                
                while (!q.empty()) {
                    auto [x, y] = q.front();
                    q.pop();
                    for (int k = 0; k < 4; k++) {
                        int nx = x + dx[k], ny = y + dy[k];
                        if (nx >= 0 && nx < n && ny >= 0 && ny < m && 
                            grid[nx][ny] == '1') {
                            grid[nx][ny] = '0';
                            q.push({nx, ny});
                        }
                    }
                }
            }
        }
    }
    return islands;
}

DFS解法

void dfs(vector<vector<char>>& grid, int x, int y) {
    if (x < 0 || x >= grid.size() || y < 0 || y >= grid[0].size() || 
        grid[x][y] == '0') 
        return;
    
    grid[x][y] = '0'; // 标记为已访问
    
    // 四个方向递归
    dfs(grid, x + 1, y);
    dfs(grid, x - 1, y);
    dfs(grid, x, y + 1);
    dfs(grid, x, y - 1);
}

int numIslandsDFS(vector<vector<char>>& grid) {
    if (grid.empty()) return 0;
    
    int n = grid.size(), m = grid[0].size();
    int islands = 0;
    
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (grid[i][j] == '1') {
                islands++;
                dfs(grid, i, j);
            }
        }
    }
    return islands;
}

两种解法对比

  • BFS:显式队列,非递归,适合大规模数据(避免栈溢出)

  • DFS:代码简洁,递归深度可能较大(网格大时可能栈溢出)

六、总结与进阶

核心要点

  1. BFS = 队列 + 分层遍历 → 最短路径问题

  2. DFS = 递归/栈 + 深度探索 → 连通性问题

  3. 两者时间复杂度均为O(V+E),空间复杂度取决于实现方式

  4. 网格类问题注意方向数组的使用技巧

常见变形

  • 双向BFS:从起点和终点同时开始搜索,相遇时停止(优化空间)

  • 迭代加深DFS:限制深度的DFS,结合BFS层级优势

  • A*算法:带启发函数的BFS,用于路径规划

学习建议

  1. 从树结构的BFS/DFS开始练习

  2. 掌握网格问题的方向处理技巧

  3. 理解状态标记的重要性(避免重复访问)

  4. 逐步尝试复杂场景(加权图、障碍物、多目标点)

算法学习如同探索迷宫:BFS给你全局视野,DFS带你深入细节。掌握两者,你将拥有解决图论问题的强大武器!

练习题目推荐:

  • Leetcode 111: 二叉树的最小深度(BFS)

  • Leetcode 200: 岛屿数量(DFS/BFS)

  • Leetcode 127: 单词接龙(BFS)

  • Leetcode 207: 课程表(DFS检测环)

掌握BFS和DFS是算法学习的重要里程碑,它们将成为你解决更复杂问题的基础工具!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jay_515

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值