前言
在YOLO等目标检测模型中,对图片进行打标的核心目的是为监督学习提供训练数据,通过标注目标物体的边界框和类别标签,使模型能够学习识别和定位目标的规律。打标数据为模型训练提供监督信号,通过对比预测结果与真实标注值,计算定位损失、分类损失和置信度损失,驱动模型参数优化;同时,标注数据也是评估模型性能(如mAP、精度、召回率)的基础,确保模型在多样场景(如多尺度目标、遮挡、复杂背景)中具备泛化能力。此外,标注数据需与数据增强操作同步调整,保证训练过程中图像变换与标注的一致性。缺乏高质量标注数据将直接影响模型的训练效果和实际应用能力。
一、数据标注工具
1、LabelImg:一款图形图像标注工具,用Python编写,并将Qt用于其图形界面。可以用于进行目标检测项目的标注工作,支持2D矩形框标注。
2、Labelme:一款开源的图像标注工具,由Visual Geometry Group开发。可以在线和离线使用,支持多边形分割、语义分割、2D框、线标注、点标注。
3、VIA-VGG Image Annotator (VIA):一款开源的图像标注工具,由Visual Geometry Group开发。可以在线和离线使用,支持多边形分割、语义分割、2D框、线标注、点标注。Version 3增加了对视频和音频的标注以及人脸标注。
4、RectLabel:一款目标检测标注工具,支持导出YOLO、KITTI、COCO JSON与CSV格式,读写Pascal VOC格式的XML文件。
5、VOTT:微软发布的一款基于JavaScript开发用于图像目标检测的标注工具,使用React+Redux进行开发,支持Windows和Linux平台运行。软件提供了基于CNTK训练的faster-rcnn模型进行自动标注然后人工矫正的方式,能大幅减轻标注所需的工作量。
6、OpenCV/CVAT:一款开源的计算机视觉库,提供了多种标注类型,包括多边形分割、语义分割、2D框、线标注、点标注等。同时支持视频标注和多种文件导出格式,如CVAT for video、CVAT for images、PASCAL VOC等。
7、LableBox:一款WEB模式下的标记工具,提供自定义注释API支持,纯JS + HTML支持。
二、数据标注介绍
1、labelme安装
安装labelme:
官网链接: https://github.com/wkentaro/labelme
在使用时,如果想安装到自己经常使用的python解释器下,就要确保当前环境变量配置的路径是当前解释器。
可以打开cmd命令窗口查看python解释器的版本
如果查看后是自己想安装的解释器路径,就将下面的命令输入到cmd窗口就可以安装,注意pyqt5和pillow是labelme的依赖库,都需要安装,如果安装后出现不能使用的情况极大可能是每个库之间的版本不适配,可以查询合适的版本安装。下面是我安装的版本,python解释器环境是python3.9
安装命令:
1.pip install labelme
2.pip install pyqt5
3.Pip install pillow
4.cmd中输入labelme启动
2、数据标注的目的
在YOLO(You Only Look Once)等目标检测算法中,对图片进行打标(标注)操作的目的是为模型提供监督学习所需的训练数据,使模型能够学习如何从输入图像中准确识别和定位目标物体。
(1)监督学习的必要条件
边界框(Bounding Box):目标物体的位置和大小(通常用中心点坐标、宽度和高度表示)。
类别标签(Class Label):目标所属的类别(如“人”“车”“狗”等)。
在某些任务中可能还包括其他信息(如目标的分割掩码或关键点)。
如果没有标注数据,模型将无法知道哪些区域需要被检测,也无法衡量预测结果的准确性。
(2)提供监督信号(Loss计算)
在训练过程中,YOLO会输出预测的边界框和类别概率,然后通过与标注的真实值(Ground Truth)对比,计算损失(Loss)并反向传播优化模型参数。例如:
定位损失(Localization Loss):衡量预测边界框与真实边界框的位置差异(如均方误差或IoU损失)。
分类损失(Classification Loss):衡量预测类别与真实类别的概率差异(如交叉熵损失)。
置信度损失(Confidence Loss):区分目标是否存在(如二元交叉熵)。
标注数据是计算这些损失的基础,直接驱动模型参数更新。
(3) 模型评估与性能验证
标注数据不仅用于训练,还用于评估模型的性能(如测试集或验证集)。常见的评估指标包括:
精度(Precision):正确检测的正样本占所有预测正样本的比例。
召回率(Recall):正确检测的正样本占所有真实正样本的比例。
mAP(Mean Average Precision):综合衡量不同类别和不同IoU阈值下的平均精度。
没有标注数据,就无法量化模型的实际表现。
数据标注是为了原始的图像文件转化为json文件,json文件中储存的信息如下图,label就是该位置的物体属于哪个类别,points就是物体的中心点坐标
给每个数据打上标签,默认保存为json格式文件
3、数据标签格式转换
(1)格式转换的必要性
格式转换(如将JSON标注转为YOLO的TXT格式)的必要性在于适配目标检测框架的输入规范,并提升数据处理的效率。YOLO等模型要求标注文件以归一化坐标(类别索引、中心点、宽高)的TXT格式存储,而JSON文件通常包含冗余信息(如未归一化的像素值、多层级元数据),需通过转换提取核心标注数据并标准化格式。此举不仅解决了不同标注工具(如LabelImg、COCO)与训练框架的兼容性问题,还简化了数据读取流程,降低计算开销,同时确保数据增强操作(如缩放、旋转)后标注与图像的同步调整,最终提高模型训练速度和稳定性。
(2)格式转换的方法及本质变化
使用yolo框架带的json转换工具将json文件转换为yolo能使用的数据。
需要在代码中修改,文件输出路径。
txt文件中的内容
总结
总结来说,数据标注就是通过标注目标物体的位置(边界框)和类别信息为模型提供监督训练数据的关键步骤,直接影响目标检测的准确性和泛化能力。