
3D Object Detection
Z-Jeff
当前:
刚入职SLAM工程师,萌新一枚,想要成长为大神,路漫漫其修远兮。
23年之前:
玩一点opengl,cuda,嵌入式。
涉猎一点目标检测,文本分类,边缘计算。
研究生方向是SLAM,三维重建。
菜鸟一枚,多多指教。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
室内环境下的3D 目标检测调研
任务:调研室内场景下基于单帧图像的3D目标检测的研究情况,选出精确性最好的前五名,有开源代码的前三名,总结成一个报告发给我,形式可以用PPT可以用word。思路:首先了解相关数据集,benchmark,在数据集的基础上比较不同算法。1. 室内场景的3D数据集sunrgbd:没有官方模型准确率排名scannet:有排名http://kaldir.vc.in.tum.de/scannet_benchmark/3D 语义分割任务:(并不是3D目标检测)OccuSeg 来源:C..原创 2020-07-09 11:15:49 · 3229 阅读 · 2 评论 -
VoteNet 的 Hough voting 是怎么产生的
前言VoteNet 是一个3D 点云目标检测的一个模型,其中涉及Hough voting的概念,困惑了我好久,这里记录下我的理解。如有错误,欢迎指正。在VoteNet的源码中,涉及Hough voting的计算有两处:在点云数据的label产生中,计算Hough voting的真实值 在网络的正向传播过程中,计算Hough voting的预测值以下将通过这两个部分讲解Hough voting。一、Hough voting真实值的计算其源代码在votenet/sunrgbd/sun原创 2020-06-29 10:53:12 · 3320 阅读 · 4 评论 -
SUN RGB-D数据集的理解
SUN RGB-D数据集是普灵斯顿大学的 Vision & Robotics Group 公开的一个有关场景理解的数据集。官方介绍在此,其中有视频介绍。视频介绍已经很详细了,建议先看懂视频。此博客仅仅列出个人认为的一些理解要点,如有错误,欢迎指正。SUN RGB-D 数据集包含10335张不同场景的室内图片,图片的格式是RGB-D格式。一、数据采集通过四款3D摄像机采集图像和深度信息:Intel Realsence Asus Xtion Kinect v1 Kinect原创 2020-06-14 17:35:25 · 16249 阅读 · 21 评论