又一次中国震撼:MiniMax开源大模型在海外引发热议

美国AI界正感受到来自中国进步的真实挑战。之前中国AI是跟在美国后头气喘吁吁地追赶,但今年我们拉出了自己的方向,中美开始形成真正意义彼此竞争的局面,而欧洲、日本则几乎出局了。年初DeepSeek一鸣惊人,颠覆了人们的许多认知,也带来许多“深度思考”。这周,一家来自上海的AI公司发布了一款名为MiniMax-M1的大模型,这是全球首个开源大规模混合架构推理模型,在海外科技圈引发了不小的震动。

img

(海外网友热议)

就在不久前,还有西方媒体在质疑中国AI技术的原创性,如今MiniMax-M1以其独创的线性注意力机制混合架构,不仅在多项基准测试中超越了众多开源模型,甚至在某些指标上接近了OpenAI、Google等头部公司。

不妨看看这个模型的技术特点。MiniMax-M1支持100万token的上下文输入,可以一次性处理相当于一本140万字史诗级小说的文本量,而算力消耗仅为同类产品的30%左右。

更让人印象深刻的是,MiniMax团队仅用512块英伟达H800显卡,三周时间就完成了强化学习训练,成本只有53.47万美元。这个数字在AI训练动辄数千万美元的背景下,简直是奇迹。

img

(美国知名科技媒体报道)

这背后反映的是什么?是中国AI企业在面临外部压力和资源约束的情况下,被逼出来的创新能力。美国对中国AI产业的技术封锁和芯片限制,本意是要遏制中国的发展,结果却催生了中国企业在算法优化和架构创新上的重大突破。

特别值得注意的是,MiniMax选择了开源这条路。在当前AI大模型竞争愈发激烈的背景下,这个决定并不简单。这里面有深层的战略考量。首先,开源能够迅速扩大影响力,让全球开发者都能接触到中国的技术成果。其次,这也是对美国技术封锁的一种反击——你们封锁技术,我们就把技术免费分享给全世界。

从更大格局看,这体现了中国企业的自信和大度。我们不搞技术霸权,而是推动全球AI技术共同发展,与某些国家搞技术壁垒的做法形成鲜明对比。中国工程师有算法和技术路线创新的活跃思维,也有将AI应用实际落地的强烈愿望和使命感。

MiniMax-M1的出现,无疑为中美AI竞争格局注入了新的变量。从技术层面看,中国在AI基础模型领域开始在某些方向上引领创新,形成自己独特的竞争力。比如MiniMax-M1在长上下文处理、推理效率等关键指标上的突破,给美国同行带来了实实在在的压力。

从战略竞争的角度看,AI技术的开源化趋势可能会重塑整个产业格局。如果中国企业能够持续推出高质量的开源模型,那么美国企业依靠技术垄断获取超额利润的模式就会受到冲击。这对于打破美国在AI领域的技术霸权,具有重要意义。

大胆想象,当全世界的开发者都能免费使用到接近GPT-4水平的模型时,OpenAI们的定价权就会受到挑战。在技术路线上,MiniMax提出的混合架构和算法优化思路,和Deepseek一样不依赖暴力堆砌算力,而是通过架构创新来提升效率,这可能会成为未来AI发展的主流趋势。

美国制裁在逼出中国十分强劲的反制裁能力多头迸发,中国正因为此会诞生一批独特且先进的技术解决方案和路径。当然,MiniMax-M1虽然在某些指标上表现优异,但与GPT-4等顶级模型相比,整体能力可能还有差距。中国AI产业要真正实现领先,还需要持续创新。

还有差距。中国AI产业要真正实现领先,还需要持续创新。

同时要警惕美国可能的反制措施。面对中国AI技术快速发展,美国很可能进一步加强技术封锁。但AI的路应当怎么走,谁都提供不了垄断性答案,探索仍处于早期。人口众多、市场巨大的中国,势必是AI时代的主角之一,谁都休想将我们边缘化。

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

基于知识点我自己画了一张AI大模型入门学习的思维导图,基本上是一份纯自学的学习指南,因为本身我们就具备编程基础,学习起来其实不难的,需要这份学习路线图和学习资料包的可以扫码添加一下我的小助手,她会把实战教程、学习路线图、书籍和手册分享给大家。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

img

下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!

有需要完整版学习路线,可以微信扫描下方二维码**,立即免费领取!**

在这里插入图片描述

AI大模型学习路线汇总

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

img

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

学会后的收获:

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!

有需要完整版学习路线,可以微信扫描下方二维码**,立即免费领取!**

在这里插入图片描述

### 关于 MiniMax 开源大模型 #### 介绍 MiniMax 是一家成立于2021年12月的人工智能公司,专注于开发先进的大型语言模型(LLMs)。该公司由商汤科技前副总裁闫俊杰创立。核心技术围绕着名为 ABAB 的大模型展开,该模型采用了独特的 Mixture of Experts (MoE) 架构,在国内率先实现了这一创新设计[^1]。 #### 特点 - **高效能与大规模参数**:得益于 MoE 架构的应用,使得即使面对复杂的任务也能维持高效的运算表现;同时支持更大规模的参数配置。 - **多模态理解能力增强**:对于图像、文本等形式的数据具备更强的理解力。 - **跨语言适应性强**:不仅限于单一语种的支持,而是可以处理来自不同文化背景下的自然语言交流需求。 - **快速迭代更新机制**:持续优化算法逻辑和技术框架,确保始终处于行业前沿位置。 #### 使用方法 为了便于开发者接入并利用这些强大的功能模块,MiniMax 推出了专门面向第三方用户的开放接口——MiniMax API 平台。通过简单的注册流程即可获得访问权限,并按照官方文档指导完成相应调用操作。此外还有像 海螺 AI 和 星野 这样的具体解决方案可供选择,它们分别针对特定类型的业务场景做了针对性适配调整。 ```python import requests def call_minimax_api(api_key, prompt_text): url = "https://api.minimax.chat/v1/generate" headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json' } payload = {"prompt": prompt_text} response = requests.post(url, json=payload, headers=headers) return response.json() ``` #### 应用场景 - **聊天对话系统构建**:无论是客服机器人还是社交娱乐类应用中的虚拟伙伴角色创建都能发挥重要作用; - **自动化内容创作工具**:辅助撰写文章、脚本编写甚至是创意构思环节提供灵感源泉; - **语音交互设备集成方案**:智能家居控制中心或是车载信息系统内的声控命令解析等功能实现; - **情绪识别与反馈生成器**:帮助品牌更好地把握消费者心理状态变化趋势从而制定更精准营销策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值