美国AI界正感受到来自中国进步的真实挑战。之前中国AI是跟在美国后头气喘吁吁地追赶,但今年我们拉出了自己的方向,中美开始形成真正意义彼此竞争的局面,而欧洲、日本则几乎出局了。年初DeepSeek一鸣惊人,颠覆了人们的许多认知,也带来许多“深度思考”。这周,一家来自上海的AI公司发布了一款名为MiniMax-M1的大模型,这是全球首个开源大规模混合架构推理模型,在海外科技圈引发了不小的震动。
(海外网友热议)
就在不久前,还有西方媒体在质疑中国AI技术的原创性,如今MiniMax-M1以其独创的线性注意力机制混合架构,不仅在多项基准测试中超越了众多开源模型,甚至在某些指标上接近了OpenAI、Google等头部公司。
不妨看看这个模型的技术特点。MiniMax-M1支持100万token的上下文输入,可以一次性处理相当于一本140万字史诗级小说的文本量,而算力消耗仅为同类产品的30%左右。
更让人印象深刻的是,MiniMax团队仅用512块英伟达H800显卡,三周时间就完成了强化学习训练,成本只有53.47万美元。这个数字在AI训练动辄数千万美元的背景下,简直是奇迹。
(美国知名科技媒体报道)
这背后反映的是什么?是中国AI企业在面临外部压力和资源约束的情况下,被逼出来的创新能力。美国对中国AI产业的技术封锁和芯片限制,本意是要遏制中国的发展,结果却催生了中国企业在算法优化和架构创新上的重大突破。
特别值得注意的是,MiniMax选择了开源这条路。在当前AI大模型竞争愈发激烈的背景下,这个决定并不简单。这里面有深层的战略考量。首先,开源能够迅速扩大影响力,让全球开发者都能接触到中国的技术成果。其次,这也是对美国技术封锁的一种反击——你们封锁技术,我们就把技术免费分享给全世界。
从更大格局看,这体现了中国企业的自信和大度。我们不搞技术霸权,而是推动全球AI技术共同发展,与某些国家搞技术壁垒的做法形成鲜明对比。中国工程师有算法和技术路线创新的活跃思维,也有将AI应用实际落地的强烈愿望和使命感。
MiniMax-M1的出现,无疑为中美AI竞争格局注入了新的变量。从技术层面看,中国在AI基础模型领域开始在某些方向上引领创新,形成自己独特的竞争力。比如MiniMax-M1在长上下文处理、推理效率等关键指标上的突破,给美国同行带来了实实在在的压力。
从战略竞争的角度看,AI技术的开源化趋势可能会重塑整个产业格局。如果中国企业能够持续推出高质量的开源模型,那么美国企业依靠技术垄断获取超额利润的模式就会受到冲击。这对于打破美国在AI领域的技术霸权,具有重要意义。
大胆想象,当全世界的开发者都能免费使用到接近GPT-4水平的模型时,OpenAI们的定价权就会受到挑战。在技术路线上,MiniMax提出的混合架构和算法优化思路,和Deepseek一样不依赖暴力堆砌算力,而是通过架构创新来提升效率,这可能会成为未来AI发展的主流趋势。
美国制裁在逼出中国十分强劲的反制裁能力多头迸发,中国正因为此会诞生一批独特且先进的技术解决方案和路径。当然,MiniMax-M1虽然在某些指标上表现优异,但与GPT-4等顶级模型相比,整体能力可能还有差距。中国AI产业要真正实现领先,还需要持续创新。
还有差距。中国AI产业要真正实现领先,还需要持续创新。
同时要警惕美国可能的反制措施。面对中国AI技术快速发展,美国很可能进一步加强技术封锁。但AI的路应当怎么走,谁都提供不了垄断性答案,探索仍处于早期。人口众多、市场巨大的中国,势必是AI时代的主角之一,谁都休想将我们边缘化。
大模型岗位需求
大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
基于知识点我自己画了一张AI大模型入门学习的思维导图,基本上是一份纯自学的学习指南,因为本身我们就具备编程基础,学习起来其实不难的,需要这份学习路线图和学习资料包的可以扫码添加一下我的小助手,她会把实战教程、学习路线图、书籍和手册分享给大家。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!
有需要完整版学习路线,可以微信扫描下方二维码**,立即免费领取!**
AI大模型学习路线汇总
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
学会后的收获:
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!
有需要完整版学习路线,可以微信扫描下方二维码**,立即免费领取!**