《论语·为政》中讲,“三十而立”,讲的是一个人到了三十岁的时候,就应该有属于自己完整的学术体系从而“知礼”,当然现在的中国和一千多年前的春秋毕竟还是南辕北辙的两个时代。白驹过隙的社会发展,让我们的三十知礼变成了三十岁安身立命,从容面对生活的苦难。
三十岁是人生的一个转折点,那么程序员到了三十岁时在工作上该如何抉择:
程序员到了30岁了,应该去做什么?
对于一个技术人员来讲,成为行业最顶尖的技术专家或者管理岗位,毕竟还是一个概率性事件,大多数人也不过是借此糊口的普通人。面对着日新月异的代码和语言,你是否感到了力不从心?稍有懈怠,就跟不上岗位需要了?身体渐渐的发福,熬夜写代码开始扛不住了吗?
对于老板来说,永远都存在更年轻、更便宜的选择。老实说,这样的情况会让任何一个员工陷入危机感,而不仅仅是技术人员,中年危机从没放弃敲打我们。
大龄程序员(30-35岁)转岗的现象一直存在,并且非常普遍,到底有多普遍?
程序员的意向转行年龄有逐渐后延的趋势,一是程序员的薪资很难被其他岗位超越,二则是城市生活成本逐渐提高,生活压力较大,不敢轻易转行。
程序员转行都去做什么?
最受欢迎的去向是创业,不过这里的创业至少一半是指回到家乡开个餐馆、水果店此类的创业,拿融资继续做科技项目的只能占比不到1/3(也即在全部转行意向中占比不超过10%)。
很显然,程序员们其实更加青睐留在IT行业里,研发管理、运维、运营三者加在一起的比例高达44%。
当然比较理想的,还是走向管理岗位,毕竟做自己想做并且擅长做的事情是每个人都想要追求的幸福。不过最终能达成这个目标的比例,要远比意向比例低得多,而且更有逐年下降的趋势。
毕竟从主流语言的热度趋势来看,不断涌入程序员这个职业的人逐年不断的再增长,这和程序员工作本身收入可观以及近年来互联网创业热潮都有直接关系,但这会继续加剧程序员工作岗位中的金字塔现象。
程序员们更喜欢哪个城市?
其实对大多数走出家门,选择在北上广做程序员的人来讲,除了高薪的诱惑,同时也存在着城市本身的吸引力,即便是转行,也会有相当大比例的一部分人选择留在一线城市。根据主流城市程序员就业流入图,广州以15.9%的流入率成为了程序员最喜欢的城市。
而从热门城市程序员平均工资中可以看到上海(11860)、北京(12555)、杭州(8188)、广州(8907),广州并不是最高的,如果同样是异地就业,广州能够在薪资并不是最高的情况下占到了最高的流入率,说明广州这座城市是实打实的吸引着程序员的涌入。那么,广州的转行程序员留存数也极有可能是最大的。
程序员该怎么为转行做准备?
我们还是用数据分析的老办法。相当大的一部分有转行意愿的程序员犹豫的原因是因为没有写代码之外的技能、不熟悉其他行业业务、甚至是因为年龄、薪水落差所以有很大的心理障碍。在这儿我们提供两个行动方案,比较积极的,比较消极的(找不到合适的工作怎么办),为此我们特意找了猎头朋友聊了聊转行的注意事项。
积极的方案:
转行的第一件事,就是挖掘优势以及提炼个人价值。
要仔细的思考:
1.我要什么(安逸的生活?不菲的收入?)
2.我有什么(知识、技能、经历、人脉)
3.我能失去什么(家庭生活?背井离乡?)
然后在1与2之间,找到交差的区域,再初步寻找和收集身边的公司、职位信息,形成公司与职位的基础List。为List中的企业基于1与2进行打分,然后做筛选。
根据筛选结果,对2与3来进行匹配与优化。然后重复这个行为,不断优化,直到找到工作。
消极的方案:
首先,我们得有个的好心态,毕竟闯入新领域可能会遇到各种麻烦。可能一年半载了还找不到钟意的目标工作,此时怎么办?
所以要先给自己设定找工作的预期时间,比如半年,一年,这样可以使自己免于过分焦虑。就没那么焦虑。
同样列举一个List,我们再反推法去构思目标和画地图,从而回到积极方案中的2-3优化循环。
计算机毕业何去何从?
现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
9周成为大模型工程师
第1周:基础入门
-
了解大模型基本概念与发展历程
-
学习Python编程基础与PyTorch/TensorFlow框架
-
掌握Transformer架构核心原理
-
第2周:数据处理与训练
-
学习数据清洗、标注与增强技术
-
掌握分布式训练与混合精度训练方法
-
实践小规模模型微调(如BERT/GPT-2)
第3周:模型架构深入
-
分析LLaMA、GPT等主流大模型结构
-
学习注意力机制优化技巧(如Flash Attention)
-
理解模型并行与流水线并行技术
第4周:预训练与微调
-
掌握全参数预训练与LoRA/QLoRA等高效微调方法
-
学习Prompt Engineering与指令微调
-
实践领域适配(如医疗/金融场景)
第5周:推理优化
-
学习模型量化(INT8/FP16)与剪枝技术
-
掌握vLLM/TensorRT等推理加速工具
-
部署模型到生产环境(FastAPI/Docker)
第6周:应用开发 - 构建RAG(检索增强生成)系统
-
开发Agent类应用(如AutoGPT)
-
实践多模态模型(如CLIP/Whisper)
第7周:安全与评估
-
学习大模型安全与对齐技术
-
掌握评估指标(BLEU/ROUGE/人工评测)
-
分析幻觉、偏见等常见问题
第8周:行业实战 - 参与Kaggle/天池大模型竞赛
- 复现最新论文(如Mixtral/Gemma)
- 企业级项目实战(客服/代码生成等)
第9周:前沿拓展
- 学习MoE、Long Context等前沿技术
- 探索AI Infra与MLOps体系
- 制定个人技术发展路线图
👉福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】