LeNet网络结构

本文详细介绍了LeNet网络结构,包括输入图片、卷积层(C1、C3)、池化层(S2、S4)、全连接层(F6、Output)。分析了卷积核大小、步长、参数数量、连接数等关键要素,揭示了权值共享如何减少参数,以及池化层的作用。特别指出C3层通过不同组合连接S2层的特征图来提取多样特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LeNet网络结构

在这里插入图片描述
LeNet结构分析如下:

1.输入层:输入图像尺寸为32 X 32(统一尺寸且是单通道图像)
  1. 输入图片:3232;
    卷积核大小:5
    5;步长为1
    输出featuremap大小:2828 ((32-5)/1+1)=28;
    神经元数量:28
    286;
    可训练参数:(5
    5+1) * 6(每个滤波器55=25个unit参数和一个bias参数,一共6个滤波器)
    连接数:(5
    5+1)62828=122304;
    有122304个连接,但是我们只需要学习(6
    (5*5+1))=156个参数,主要是通过权值共享实现的。
  2. S2层-池化层,降低网络训练参数以及模型的过拟合程度,主要有最大池化、平均池化
    输入:2828;
    采样区域:2
    2 ;步长为2
    采样方式:4个输入相加,乘以一个可训练参数,再加上一个可训练偏置。结果通过sigmoid
    采样种类:6
    输出featureMap大小:1414
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值