tensorflow、python环境的配置

配置TensorFlow和Python环境是一项挑战,涉及到Anaconda、CUDA、cuDNN和版本兼容性问题。本文记录了从安装Anaconda到创建Python 3.6虚拟环境,解决tensorflow-gpu安装中的各种问题,包括错误处理、版本匹配和依赖升级的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tensorflow、python环境的配置

实属不易,每次配置环境真的是费了九牛二虎之力,免得下次又忘,索性记个笔记,自己电脑搭好环境,在服务器搭建
首先我选择的框架是tensorflow,用起来确实没有pytorch好用,别人说的,
1.下载anaconda,自带python,anaconda3 5.3之后自带的是python3.7,包括5.3,;
2.因为要安装tensorflow-gpu,所以得安装cuda和cudnn,这儿需要注意cuda和cudnn以及你电脑型号、tensorflow-gpu版本几者之间版本兼容的问题,我自己在服务器安装的cuda是10.0,cudnn是7.6,具体安装教程我其他文章有,写的不详细的可以看看教程,网上很多
3.tensorflow-gpu版本和python版本也要兼容,因为自己下载的是anaconda自带python3.7,所以在终端用pip命令安装tensorflow-gpu时,报出无法匹配到合适版本的问题,查询发现,python3.7不支持用pip命令安装tensorflow-gpu,所以在官网就手动下载tensorflow-gpu的.whl文件在终端进行安装,可能是我方法的问题,没有成功
4.查找后发现python3.6能支持终端使用pip命令安装,所以就根据网上的教程新装了一个虚拟环境,
(1)conda config --add channels ttps://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
(2)conda config -

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值