
元启发式优化算法
文章平均质量分 96
鹤鸣优化
三明学院信息工程学院人工智能专业教授,博士,硕士生导师,人工智能与信息融合应用创新研究中心负责人。三明市高层次C类人才,福建省人工智能学会理事,福建省计算机学会理事,福建省人工智能科教学会会员,中国人工智能学会会员,中国计算机学会会员,中国自动化学会会员,中国计算机学会福州分部委员,中国人工智能学会青年工作委员会委员,三明市计算机信息科学学会会员,SCI检索期刊《Computer Systems Science and Engineering》编委,EI检索期刊《Information》编委,中文核心期刊《智能系统学报》助理编委。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
改进的䲟鱼优化算法(Modified Remora Optimization Algorithm,MROA)(原文作者)
䲟鱼优化算法(Remora Optimization Algorithm, ROA)是2021年提出的一种元启发式优化算法,其灵感来自于海洋中䲟鱼的寄生行为。作为海洋中最聪明的鱼,为了免受敌人的入侵,同时也为了节省体力,䲟鱼会寄生在旗鱼、鲸鱼或其他生物上觅食。算法以䲟鱼寄生在旗鱼和鲸鱼原创 2023-03-12 09:00:00 · 981 阅读 · 2 评论 -
䲟鱼优化算法(Remora Optimization Algorithm,ROA)(原文作者)
䲟鱼优化算法(Remora Optimization Algorithm, ROA)是2021年提出的一种元启发式优化算法,其灵感来自于海洋中䲟鱼的寄生行为。作为海洋中最聪明的鱼,为了免受敌人的入侵,同时也为了节省体力,䲟鱼会寄生在旗鱼、鲸鱼或其他生物上觅食。算法以䲟鱼寄生在旗鱼(Swordfish Optimization Algorithm, SFO)和鲸鱼(Whale Optimization Algorithm, WOA)身上为例。因此,ROA借鉴了SFO算法和WOA的部分更新公式,进行全局和局部的原创 2023-02-26 12:53:00 · 2565 阅读 · 5 评论 -
改进的白鲸优化算法(原文作者)
探索阶段通过随机选择白鲸,保证了设计空间中的全局搜索能力,开发阶段控制着设计空间中的局部搜索。为了模拟行为,白鲸被视为搜索代理,通过改变位置向量在搜索空间中移动。此外,在BWO中考虑了鲸鱼坠落的概率,它改变了白鲸的位置。由于BWO基于种群的机制,白鲸被视为搜索代理,而每条白鲸都是一个候选解决方案,并在优化过程中进行更新。原创 2023-07-02 15:01:21 · 3950 阅读 · 10 评论 -
改进分组教学优化算法(Modified Group Teaching Optimization Algorithm,MGTOA)原文作者
分组教学优化算法(Group Teaching Optimization Algorithm, GTOA)是一种模拟群体教学机制的元启发式优化算法。GTOA的灵感来自于集体教学机制。每个学生都将学习在教师阶段获得的知识,但每个学生的自主权都很弱。本文认为每个学生都有不同的学习动机。优秀学生具有较强的自学能力,而普通学生具有一般的自学动机。原创 2023-04-16 20:55:26 · 815 阅读 · 0 评论 -
灰狼优化算法(Grey Wolf Optimizer,GWO)
灰狼优化算法(Grey Wolf Optimizer, GWO),由澳大利亚格里菲斯大学学者Mirjalili等人于2014年提出来的一种群智能优化算法。灵感来自于灰狼群体捕食行为。GWO算法模拟了自然界中灰狼的领导等级和狩猎机制。将灰狼分为四种类型,用来模拟等级阶层。此外,还模拟了寻找并捕抓猎物、包围猎物和攻击猎物三个主要阶段。翻译 2023-03-28 17:36:31 · 21273 阅读 · 4 评论 -
改进的白骨顶鸡优化算法(Improved Coot Optimization Algorithm,ICOOT)(原文作者)
由于反向学习策略生成的反向解缺乏随机性,Long等提出一种改进的反向学习策略(Random Opposition-based Learning, ROBL),引入随机值进一步加强了种群多样性,提高了种群跳出局部最优的能力。引入复合突变策略来改进COOT。原创 2023-03-09 08:50:52 · 633 阅读 · 2 评论 -
改进的大猩猩部队优化算法(Modified Gorilla Troops Optimizer,MGTO)(原文作者)
大猩猩部队优化算法(Gorilla Troops Optimizer, GTO)是于2021年提出的元启发式算法,其灵感来自于大猩猩在自然界中的社会行为。将大猩猩的集体社会生活习性数学化,从而提出了具体的数学模型。原创 2023-03-07 10:00:00 · 1654 阅读 · 2 评论 -
大猩猩部队优化算法(Gorilla Troops Optimizer,GTO)
大猩猩部队优化算法其灵感来源于大猩猩部队在自然界中的社会智能。将大猩猩的集体社会生活习性数学化,从而提出了具体的数学机制。翻译 2023-03-07 09:00:00 · 2441 阅读 · 1 评论 -
头脑风暴优化算法(Brain Storming Optimization Algorithm, BSO)
头脑风暴优化算法(Brain Storming Optimization Algorithm, BSO)是2011年提出的一种群智能优化算法,其灵感来源于头脑风暴法。当一群人围绕一个特定的兴趣领域产生新观点的时候,这种情境就叫做头脑风暴。头脑风暴法是一种充分开发人类创造性思维解决问题的方法。翻译 2023-03-06 11:00:00 · 2491 阅读 · 3 评论 -
黏菌优化算法(Slime Mould Algorithm,SMA)
黏菌算法(Slime Mould Algorithm, SMA)是基于黏菌觅食行为的一种优化算法。在觅食过程中,黏菌发现食物时会发生振荡收缩。另外,在多个食物源之间,会形成粗细不一的静脉网络,静脉网络的粗细与食物源的质量有关。而黏菌在获取食物时,仍有可能对未知区域进行搜索。翻译 2023-03-05 16:19:21 · 5743 阅读 · 5 评论 -
算术优化算法(Arithmetic Optimization Algorithm,AOA)
算术优化算法(Arithmetic Optimization Algorithm, AOA)是由学者Laith Abualigah等人于2021年提出的一种新型元启发式优化算法,其灵感来源于算术中的四则混合运算。算法通过数学函数加速器选择优化策略,将整个过程分为探索和开发,即利用乘除运算进行全局探索,利用加减运算进行局部开发。翻译 2023-03-06 09:00:00 · 5195 阅读 · 3 评论 -
矮猫鼬优化算法(Dwarf Mongoose Optimization Algorithm,DMO)
矮猫鼬优化算法(Dwarf Mongoose Optimization Algorithm,DMO)是由Jeffrey O. Agushaka等于2022年提出的一种群体智能优化算法,其灵感来源于矮猫鼬的群体觅食行为。矮猫鼬通常生活在一个母系社会的家族群体中,主要有觅食、侦察和保姆三种社会职能。矮猫鼬以集体觅食和侦察而闻名,由雌性首领引导种群进行食物源的搜寻。一旦满足保姆交换条件,即当阿尔法组未能寻找到合适的食物时,将交换阿尔法组和保姆组的成员,且阿尔法组同时进行觅食和寻找睡眠丘。翻译 2023-03-05 14:35:42 · 1351 阅读 · 1 评论 -
白骨顶鸡优化算法(Coot Optimization Algorithm,COOT)
白骨顶鸡优化算法(Coot Optimization Algorithm, COOT)是2021年提出的一种元启发式优化算法,灵感来源于白骨顶鸡的移动习性。算法对白骨顶鸡种群进行了层级划分,适应度值高者为种群领导者,其余为跟随者。跟随者具有两种位置更新方式,分别为主动更新和被动更新。主动更新过程中,跟随者根据链式运动或随机运动更新位置,并不依赖领导者;在被动更新过程中,跟随者需要向领导者方向发生靠拢。种群需要朝着最佳区域前进,因此在跟随者向领导者靠拢的同时,领导者也要同时不断调整自身位置向最优区域靠近。翻译 2023-03-05 09:00:00 · 908 阅读 · 1 评论 -
沙猫群优化算法(Sand Cat Swarm Optimization,SCSO)(附改进及Matlab源码,完整,免费)
沙猫群优化(Sand Cat Swarm Optimization, SCSO)算法是一种受自然界沙猫行为而设计的元启发式算法。沙猫的两个主要动作是觅食和攻击猎物。这个算法的灵感来源于沙猫对低频噪声的检测能力。沙猫无论是在地面上还是在地下,都能凭借其独特的特征找到猎物。翻译 2023-03-04 20:38:45 · 6841 阅读 · 1 评论 -
鲸鱼优化算法(Whale Optimization Algorithm,WOA)
鲸鱼优化算法(Whale Optimization Algorithm, WOA)是2016年提出的一种元启发式优化算法,其灵感来自于座头鲸的狩猎行为。通过模拟随机或最佳个体捕食猎物的狩猎行为,研究者发现鲸鱼的气泡网捕食法可以分为两种,并将它们命名为“向上螺旋策略”和“双螺旋策略”。“向上螺旋策略”中,座头鲸会先下潜约12米,然后开始在螺旋中制造泡泡在猎物周围形成形状并向水面游去。“双螺旋策略”包括三个不同的环节:珊瑚环节、鲸尾拍打水面环节和捕获环节。翻译 2023-03-04 12:28:19 · 22368 阅读 · 6 评论 -
蛇优化算法(Snake Optimization,SO)(附Matlab代码,完整,免费)
蛇优化算法(Snake Optimization, SO)是2022年提出的一种元启发式优化算法,其灵感来源于蛇的交配行为。如果温度低,且食物充足,那么蛇就会相互交配,否则,蛇只会去寻找食物或吃现有的食物。依靠这些信息,将整个过程分为探索和开发。探索和开发之间的切换受环境因素影响,即温度和食物。翻译 2023-03-02 09:13:48 · 3105 阅读 · 1 评论 -
爬行动物优化算法(Reptile Search Algorithm,RSA)(附Matlab代码,完整,免费)
爬行动物优化算法(Reptile Search Algorithm, RSA)是2021年提出的一种元启发式优化算法,其灵感来自于鳄鱼的狩猎行为。鳄鱼的狩猎行为主要可以分为围猎(探索)和捕食(开发)两个阶段,通过大步行走(腹部离地行走)或小步行走(腹部贴地行走)进行围猎,通过狩猎协调或狩猎合作进行捕食。翻译 2023-02-28 11:36:44 · 982 阅读 · 1 评论 -
改进的沙猫群优化算法(Modified Sand Cat Swarm Optimization,MSCSO)(原文作者)
沙猫群优化算法(SCSO)的灵感受自然界中沙猫行为的启发。沙猫拥有检测低频噪声的能力,猎物无论是在地面还是在地下,沙猫都能找到猎物。由于这一重要的特性,它可以快速地捕捉猎物。沙猫群优化模拟了沙猫的两个主要行为:搜寻猎物和攻击猎物。由于自然界中的沙丘猫是独立生活的,为了提出种群智能的概念,假设沙丘猫是群体性的。原创 2023-02-27 13:56:43 · 2935 阅读 · 8 评论 -
黑猩猩优化算法(Chimp Optimization Algorithm,ChOA)
黑猩猩优化算法(Chimp Optimization Algorithm, ChOA)是2020年提出的一种群智能优化算法,其灵感来源于黑猩猩种群的社会行为。黑猩猩是除人类之外智力水平最高的物种,同时也是一种群居生活的物种。黑猩猩算法能够根据黑猩猩能力不同划分不同的社会职责,其社会职责可以分为攻击者(Attacker)、包围者(Barrier)、驱赶者(Chaser)和追捕者(Driver)四种类型,分别代表黑猩猩种群的最优解、次优解、第三优解和第四优解。翻译 2023-02-26 20:46:16 · 4162 阅读 · 4 评论