模型Checkpoints、HF(Hugging Face)和MS(MindSpore)

1. 模型Checkpoints是什么?

  • 定义:Checkpoints(检查点)是训练过程中保存的模型快照,包含权重、优化器状态、训练步数等信息。用于:

    • 恢复训练:当训练中断时,从检查点继续训练。

    • 推理/部署:直接加载训练好的模型进行预测。

    • 迁移学习:基于预训练模型微调新任务。

  • 文件内容:通常为.ckpt.pt.bin等格式,可能包含模型参数和额外元数据。


2. 通过HF(Hugging Face)安装Checkpoints

  • Hugging Face(HF):一个开源平台,提供大量预训练模型(如BERT、GPT)和工具库(如transformers)。

  • 安装与加载

    • 安装库pip install transformers

    • 加载模型:使用from_pretrained()方法直接下载并加载模型和分词器:

      python

      复制

      下载

      解释

      from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("bert-base-uncased") # 自动从HF下载checkpoint tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
  • 特点:无需手动下载文件,自动缓存,支持社区共享模型(通过push_to_hub上传自定义模型)。


3. 通过MS(MindSpore)安装Checkpoints

  • MindSpore(MS):华为开发的深度学习框架,类似PyTorch/TensorFlow。

  • 保存与加载

    • 保存Checkpoint

      python

      复制

      下载

      解释

      import mindspore as ms ms.save_checkpoint(model, "model.ckpt") # 保存模型参数
    • 加载Checkpoint

      python

      复制

      下载

      解释

      params = ms.load_checkpoint("model.ckpt") ms.load_param_into_net(network, params) # 加载到模型结构中
  • 用途:主要用于框架内训练恢复或部署,需自行定义模型结构后再加载参数。


对比总结

方面Hugging Face(HF)MindSpore(MS)
主要用途快速获取预训练模型,支持NLP任务深度学习框架,支持模型训练和部署
Checkpoint来源社区共享的预训练模型(如BERT、GPT)用户自行训练保存的模型参数
安装方式pip install transformers + 在线加载pip install mindspore + 本地文件操作
加载方法from_pretrained("模型名") 自动下载load_checkpoint() + 手动映射到模型结构

常见问题

  • 是否所有模型都可通过HF/MS安装?

    • HF:主要提供NLP模型,部分社区模型可能需特定权限。

    • MS:需自行训练或转换模型,无直接预训练仓库。

  • Checkpoint是否包含完整模型?

    • HF:通常包含完整参数,部分大模型可能分片存储。

    • MS:仅保存参数,需先定义模型结构再加载。

通过HF或MS安装Checkpoints,本质是通过对应平台或框架的工具加载模型参数,前者简化了预训练模型的使用,后者侧重训练流程管理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值