AI大模型学习三十二、飞桨AI studio 部署 免费Qwen3-235B与Qwen3-32B,并导入dify应用

一、说明

Qwen3-235B 和 Qwen3-32B 的主要区别在于它们的参数规模和应用场景。

参数规模

  • Qwen3-235B‌:总参数量为2350亿,激活参数量为220亿‌。
  • Qwen3-32B‌:总参数量为320亿‌。

应用场景

  • Qwen3-235B‌:作为旗舰模型,Qwen3-235B在复杂任务中表现出色,特别是在代码、数学和通用能力等基准测试中,与 DeepSeek-R1 、 o1 、 o3-mini 、 Grok-3 和 Gemini-2.5-Pro 等顶级模型相比,表现出极具竞争力的结果‌。
  • Qwen3-32B‌:适合中大型任务,适合普通的企业级部署‌。

性能表现

  • Qwen3-235B‌:在处理复杂任务时表现出色,能够提供高性能的推理结果‌。
  • Qwen3-32B‌:虽然参数规模较小,但在实际使用中也能提供良好的性能表现‌。

二、飞桨AI studio部署模型

1、注册飞桨

飞桨AI Studio星河社区-人工智能学习与实训社区https://aistudio.baidu.com/overview具体步骤不写了

2、部署模型

部署 Qwen/Qwen3-235B-A22B

 

同样方法可以部署Qwen/Qwen3-32B

同时只能部署一个,部署之前我们要停止运行的模型

 

  

三、创建dify应用,引入模型

1、安装插件OpenAI-API-compatible

详细步骤我们不说,安装后在这里找到插件

 2、导入模型

 

 

点击保存后

 

同样我们也可以添加Qwen3-235B-A22B的模型 

注意飞桨同时只能打开一个模型,没交钱的情况下

需要关闭32b,然后运行235b模型,然后再配置

Qwen3-235B-A22B不太好用,慢,可能是资源问题,毕竟免费啊

3、创建应用

 

4、测试(Qwen/Qwen3-235B-A22B)

 

5、测试(Qwen/Qwen3-32B)

速度快了很多

 

时间上有问题,所以还需要处理,这个自己看吧,毕竟这些模型并不是实时的,是以前的数据, 

### 如何获取使用 PaddleSpeech 飞桨语音合成工具 #### 工具概述 PaddleSpeech 是由百度飞桨开源的一个强大的语音处理工具包,涵盖了多种语音技术应用,包括但不限于语音识别、语音合成、声纹识别以及语音指令等功能[^3]。 #### 获取文档教程资源 官方提供了详尽的学习资料和实践指南来帮助开发者快速上手。具体可以通过以下途径获得相关文档: - **在线学习课程**:可以参考《飞桨PaddleSpeech语音技术课程》,其中包含了关于如何通过 paddle astudio 平台训练模型的具体指导[^1]。 - **GitHub 仓库中的 README 文件**:此文件不仅介绍了安装方法还列举了一些常见问题解答链接至 issues 页面供进一步查阅[^2]。 #### 安装环境搭建 为了能够顺利运行该工具包内的各项功能模块,在正式操作之前需完成必要的软件依赖项配置工作: ##### 步骤说明(非实际步骤描述) 以下是推荐的一种实现方案用于设置开发环境以便于后续实验开展: ```bash # 克隆项目代码库到本地机器 git clone https://github.com/PaddlePaddle/PaddleSpeech.git # 进入指定子目录位置准备执行特定任务流程 cd PaddleSpeech/examples/zh_en_tts/tts3/ ``` 接着按照指示进行数据集准备工作之后即可启动针对 fastspeech2 和 hifigan 模型参数调整过程从而构建属于自己的个性化声音生成解决方案[^4]。 #### 功能探索实例分享 下面给出一段简单的 Python 脚本用来演示基本 API 接口调用方式实现文本转语音转换效果如下所示: ```python from paddlespeech.t2s.bin.synthesize import main as synthesize_main config_path = 'conf/default.yaml' checkpoint_path = './exp/checkpoints/snapshot_iter_10000.pdz' synthesize_main(config=config_path, ckpt=checkpoint_path, text="你好世界", output_dir='./output/') ``` 以上代码片段展示了如何利用 `main` 函数加载预先定义好的配置文件路径(`default.yaml`) 及保存下来的权重参数快照 (`snapshot_iter_10000.pdz`) 来完成给定字符串 ("你好世界") 向对应音频片段输出的过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值