
时间序列预测(Time Series)
文章平均质量分 96
机器学习在时序预测任务中的应用!!!
AI算法蒋同学
信息学奥赛教练!从事AI视觉检测、AI数据智能相关产品研发工作!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
6、基于机器学习的预测
在第二课和第三课中,我们将预测视为一个简单的回归问题,所有的特征都是从一个输入,即时间索引,衍生出来的。我们可以通过生成我们想要的趋势和季节性特征,轻松地对未来的任何时间进行预测。但是,当我们在第四课中添加了滞后特征时,问题的性质就发生了变化。滞后特征要求在进行预测时,滞后的目标值是已知的。滞后 1 的特征将时间序列向前移动 1 步,这意味着你可以预测未来的 1 步,但不能预测 2 步。在第四课中,我们只是假设我们可以一直生成滞后特征,直到我们想要预测的期间(换句话说,每个预测都是向前一步)。原创 2024-02-02 21:00:03 · 1489 阅读 · 0 评论 -
5、混合模型(Hybrid Models)
线性回归擅长推断趋势,但不能学习交互。XGBoost擅长学习交互,但不能推断趋势。在这个课程中,我们将学习如何创建"混合"预测器,这些预测器结合了互补的学习算法,让一个算法的优点弥补另一个算法的缺点。原创 2024-02-01 14:00:11 · 2443 阅读 · 0 评论 -
4、以时间序列为特征
在早期的课程中,我们研究了时间序列的一些属性,这些属性最容易被建模为时间依赖性属性,也就是说,我们可以直接从时间索引中得到特征。然而,有些时间序列的属性只能被建模为序列依赖性属性,也就是说,使用目标序列的过去值作为特征。这些时间序列的结构可能从时间图中并不明显;然而,与过去的值相比,结构变得清晰——正如我们在下面的图中看到的那样。这两个序列具有序列依赖性,但没有时间依赖性。右边的点的坐标是(t-1时的值, t时的值)。原创 2024-02-01 13:57:01 · 1183 阅读 · 0 评论 -
3、季节性Seasonality
我们说一个时间序列表现出季节性,是指该序列的均值存在规律的、周期性的变化。季节性变化通常遵循时钟和日历 – 每天、每周或每年的重复都很常见。季节性通常由自然世界在日和年的周期或者围绕日期和时间的社会行为规范所驱动。四个时间序列的季节模式。我们将学习两种模型季节性的特征。第一种,指标,最适合观察次数较少的季节,比如每日观察的每周季节。第二种,傅里叶特征,最适合观察次数较多的季节,比如每日观察的每年季节。原创 2024-01-31 14:16:54 · 2287 阅读 · 0 评论 -
2、趋势Trend (copy)
时间序列的趋势组成部分代表了序列均值的持久、长期变化。趋势是序列中变化最慢的部分,代表了最重要的大时间尺度。在产品销售的时间序列中,增加的趋势可能是市场扩张的效果,因为随着时间的推移,越来越多的人了解到产品。四个时间序列的趋势模式在这个课程中,我们将关注均值的趋势。更一般地说,任何在序列中持久且缓慢变化的部分都可以构成趋势 – 时间序列通常有其变化的趋势。原创 2024-01-31 14:11:28 · 914 阅读 · 0 评论 -
1、时间序列线性回归
时间序列预测是一个广泛的领域,有着悠久的历史。本课程侧重于将现代机器学习方法应用于时间序列数据,以产生最准确的预测。本课程的课程灵感来自过去Kaggle预测比赛的获胜解决方案,但只要准确的预测是优先考虑的,就可以应用。原创 2024-01-30 18:57:11 · 1201 阅读 · 0 评论