神经网络中的激活函数

激活函数是指在多层神经网络中,上层神经元的输出和下层神经元的输入存在一个函数关系,这个函数就是激活函数。激活函数是神经网络中非线性变换的关键组件,给网络引入非线性因素,使其能学习和表示复杂的模式与关系。常见激活函数有Sigmoid、ReLU、Tanh等。

一、ReLU函数

ReLu函数是深度学习中最常用的激活函数,它在大于0时为自身,小于0时等于0。ReLu函数是深度学习中最常用的激活函数,它可以缓解梯度消失、梯度爆炸问题。ReLu激活函数的公式如下:

ReLu函数的图象如下:

ReLu激活函数的导数是分段函数,且非连续函数。ReLu激活函数的导数如下:

ReLu函数的导数图象如下:

可以看到,ReLu的导数只有两个值:0和1(在负轴为0,在正轴为1)。因此,ReLu函数的导数(梯度)非常稳定,这种稳定性可以有效避免梯度消失问题

ReLU的缺点
尽管ReLU具有很多优点,但它也有一些潜在的缺点:

死神经元问题(Dying ReLU Problem):当ReLU函数的输入值为负时,它的输出始终为0,这意味着神经元在某些情况下可能永远不会激活(即其输出为0)。这种情况会导致部分神经元在训练过程中“死亡”,无法参与到后续的学习。特别是在初始化时,如果某些神经元的权重偏移值过大或过小,可能导致它们在训练过程中始终无法激活。

ReLU的变种:Leaky ReLU 和Parametric ReLU(PReLU)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值