- 博客(149)
- 收藏
- 关注
原创 多智能体协同工作实例拆解
多 Agent 本质上是在大模型的指导下,多个 Agent 共同协作完成用户的任务。本文用一个实例分析 supervisor 架构下的多 Agent 设计。
2025-07-20 16:07:29
1172
原创 智能体长短期记忆最佳实践
通过的组合,LangGraph 让我们能够编排复杂、可恢复、可解释、可协作的 Agent 工作流。实现上下文工程的写入上下文。
2025-07-20 16:05:40
969
原创 智能体上下文压缩-裁剪和摘要
model=summarization_model, # 可以用更便宜的模型max_summary_tokens=128, # 每次新增的摘要 token 上限# 新增此键用于保存先前的摘要信息,以避免每次 LLM 调用都重新摘要📊 摘要策略可利用 langmem 库的 SummarizationNode。当对话达到 max_tokens 时,它会自动对较早的消息生成摘要。当历史 + 新请求 > 384 token,就把“过界”的部分喂给⇒ 产出摘要块 ⇒ 用摘要块 + 最新消息继续。
2025-07-19 19:43:13
1108
原创 智能体上下文选择-记忆工具知识
选择上下文是智能体架构中的核心机制,旨在根据任务动态筛选最有价值的信息进入上下文窗口,提升推理质量与效率。实现从状态、记忆、工具、知识等提取关键上下文,有效控制大语言模型的“注意力焦点”。
2025-07-19 19:42:21
987
原创 图示+例子 深入理解 前向反向传播
详细解析神经网络中的前向传播、反向传播以及计算图的原理与应用,帮助你更好地理解深度学习模型是如何优化和学习的。
2025-07-16 21:58:05
965
原创 AI大模型输出 解码加速剖析 如何效率翻倍
先把最费内存的注意力“碎块+就地算” (Flash),再把历史缓存“分页+目录” (Paged),最后把用户请求“灵活拼车” (Batch)。三件小事一起做,就把大模型推理从“显存搬砖工”变成“高速流水线”。
2025-07-02 22:22:18
767
原创 6阶段实现最强RAG 模块化检索增强 实践指南
通过RAG检索增强生成,补充大模型的能力,是当前AI应用热点方向,带你一次读懂的实践要点,帮AI应用系统开发者快速落地 🔥。
2025-06-30 22:00:50
869
原创 开源版gpt4o 多模态MiniGPT-4 实现原理详解
MiniGPT-4是开源的GPT-4的平民版。本文用带你快速掌握多模态大模型MiniGPT-4的模型架构、训练秘诀、实战亮点与改进方向。
2025-06-28 10:26:28
1079
原创 大模型训练 参数量-运算量-显存 如何分析计算
带你亲手算一笔账,从参数量、运算量、训练时间到显存开销,彻底搞懂训练一个大模型究竟需要多少“硬通货”。
2025-06-26 06:18:10
771
原创 大模型训练数据 做好质量控制 三个关键处理
训练好模型前,先修好数据管道!本文带你用,把互联网“大杂烩”打造成可口的模型营养餐用于大模型的预训练,效果立竿见影🔥。
2025-06-26 06:16:37
917
原创 Qwen3 Embedding 结构-加载-训练 看透模型设计哲学
作为整个句子的代表。对于因果语言模型(Causal LM)来说,这非常合理,因为模型在预测最后一个token时,其隐藏状态已经编码了前面所有文本的精华信息。这就像读完一整篇文章后,脑子里形成的那个最终总结,信息量最大!🚀fill:#333;color:#333;color:#333;fill:none;输出与应用核心计算流程(modules.json)输入与预处理Token IDs处理后Token IDs序列Token向量单句向量最终Embedding最终向量余弦相似度计算。
2025-06-20 21:19:23
1470
原创 超级马里奥游戏带你拆解最火的强化学习PPO
本文将用超级马里奥游戏,带你一步步拆解当前最火的强化学习算法——PPO,看看它是如何把一个什么都不会的AI,调教成顶级游戏高手的。
2025-06-18 21:02:15
828
原创 Python 中不那么 Pythonic的实用技巧
虽然 Python 有一套强大的设计哲学(体现在“Python之禅”中),但总有一些情况需要我们“打破规则”来解决特定问题。。
2025-06-18 11:28:02
768
原创 思维链底层逻辑,换个Prompt性能飙升50%
本文带你揭开思维链(CoT)的底层逻辑,告诉你如何通过“编程”式 Prompt,将 LLM 的推理能力压榨到极致。🚀。
2025-06-17 19:01:33
864
原创 用DeepSeek做量化赚钱:策略、实操与避坑
本文用通俗语言拆解其核心交易模型、完整落地流程与常见陷阱,并讲透背后的AI驱动原理,助你用更少的时间跑出更高的收益。高频套利则侧重统计学:ADF 检验可判断两个价格序列是否“有磁力”(协整),一旦被拉远即期待“橡皮筋”弹回。组合,让从“小白”到专业量化团队都能用同一工具。AI 不会替你承担市场风险,但能帮你快速、准确地完成数据处理与策略执行,把。AI 不会替你承担市场风险,但能帮你快速、准确地完成数据处理与策略执行,把。:DeepSeek 同时解析文字、代码与数据,像“全栈分析师”。
2025-06-15 10:38:07
718
原创 AI服务器怎么测试最大并发用户数 附完整代码
💡 依次以2 4 8个并发进行测试的图片💡 依次以2 4 8个并发进行测试的log具体压测代码已经开源在github和gitee 搜索AI_pressuretest即可压测核心目标是 “在单位时间内,以尽可能小的资源消耗,模拟出海量的、符合业务场景的请求”。压测工具通过创建“虚拟用户”来模拟真实用户。生成这些虚拟用户主要有两种模式:A. 基于线程模型B. 基于事件驱动/异步I/O模型并发数本身是一个没有意义的孤立数字。有意义的说法是:“在P99响应时间低于500ms,且错误率低于0.1%的前提下,系统能
2025-06-12 20:57:57
634
原创 打造超轻量的仿chatgpt的AI聊天应用
使用纯 HTML、CSS 和 JavaScript实现了一个类似 ChatGPT 的聊天界面。支持 Markdown 渲染(AI 回复)、代码高亮、图片上传和预览、全局搜索、对话切换等。左侧边栏:显示历史对话列表,可以新建对话。主聊天区:显示用户与 AI 的消息流。顶部工具栏:包含侧边栏开关、模型选择器和全局搜索功能。底部输入区:用户可以在此输入文本、上传图片,并发送。项目开源地址 https://github.com/jiaxin576/LightAIChat。
2025-06-11 20:56:25
1046
原创 Correlations氛围测试:文本或图像的相似度热图
它的本质是将两个嵌入向量集合之间的**余弦相似度矩阵(Cosine Similarity Matrix)**渲染为一个热图,并提供丰富的交互功能让你“用肉眼判断”相似性结构。通过构造两个矩阵(原文向量 A 和摘要向量 B),计算它们所有可能组合的语义相似度(余弦值),形成一个矩阵 S,并将其可视化为热图。该步骤是把原始内容(文本或图像)分块后,使用 Jina API 生成向量(embedding),保存为。文件,计算两组向量之间的余弦相似度矩阵,启动本地服务器呈现可交互热图。个摘要向量的余弦相似度。
2025-05-31 20:01:49
910
原创 让大模型看得见自己的推理 — KnowTrace结构化知识追踪
把检索-推理“改造”成 动态知识图构建任务,再让 LLM 只关注这张不断精炼的小图 —— 这就是显式知识追踪的核心价值。
2025-05-31 20:00:53
950
原创 RLHF奖励模型的训练
本文介绍了强化学习人类反馈(RLHF)中的奖励模型实现方法。首先解释了目标函数公式,包含对比损失和模仿学习损失两部分:对比损失使正例得分高于负例,模仿学习损失维持语言生成能力。接着通过代码分析展示了基于LLaMA的奖励模型实现,包括模型结构、正负例打分函数、损失计算方法。该模型通过联合优化奖励打分和文本生成能力,在保留强化学习能力的同时确保生成质量。典型应用包括OpenAI的GPT训练流程中的奖励模型训练阶段。
2025-05-31 19:59:44
761
原创 web反检测脚本stealth.js
下载 puppeteer-extra-plugin-stealth 仓库里的文件夹,提取里面所有(之后可以打包成 stealth.min.js,给 Playwright 用)。
2025-04-27 09:26:25
473
原创 AI大模型和人脑的区别
1.LLM如Transformer架构是一种由人工“神经元”组成的层级网络:输入的文本被切分为标记(token)序列,每个token先映射为向量表示(词嵌入)输入模型。不同脑区在功能上各有分工,例如视觉处理主要在枕叶视觉皮层,听觉在颞叶听觉皮层,语言和决策涉及额叶等,各脑区之间通过神经网络协同工作,构建层次化、关联性的概念表示,从而实现整体认知。突触可塑性是大脑学习和记忆的关键机制:当某些神经连接反复激活时,突触传递效率会增强(或减弱),这便记录下新的记忆或知识。
2025-04-23 21:28:22
500
原创 AI软硬件创新案例
AI算法方面,单项功能如心律失常AI检测、睡眠分期算法等已有临床验证产品,但将多模态数据融合并结合大模型进行综合分析,目前尚处于研发前沿。一方面,不同品牌设备各自为政,标准不统一,导致用户需要安装多个App来控制,体验支离破碎。首先,在互联性上,由于兼容主流标准和协议,用户不再受制于单一品牌,能把家中各种设备纳入一个平台统一控制。其次,在智能程度上,传统方案多为被动响应(用户手机远程开灯等),而本方案中的AI助理具备。一方面,健康监测仍是用户最关心的方向,另一方面,AI技术正迅速融入可穿戴领域。
2025-04-23 21:27:34
697
原创 python异步
(如加密、视频编码),可以用 ProcessPoolExecutor。如果使用 httpx.AsyncClient。,线程对 CPU 任务优化不明显,而。进行网络请求,应该用。✅ Python 由于。在 Python 的。
2025-04-23 21:25:55
344
原创 网络socks 代理
no_proxy=localhost,127.0.0.0/8,::1,zte.com.cn,zte.intra,gitlab.zte.com.cn,10在系统/终端中设了这样的环境变量,而没有在代码中覆盖,HTTPX 就会启用该 socks 代理。HTTPX 会自动读取系统环境变量 HTTP_PROXY, HTTPS_PROXY, ALL_PROXY 等。如果某个环境变量的值是 socks://proxyhk.zte.com.cn:80,就会导致 HTTPX 默认使用这个代理。
2025-04-23 21:24:13
222
原创 UIAutomator 与 Playwright 在 AI 自动化中的界面修改对比
在 AI 驱动的 UI 自动化中,(主要用于 Web)和(用于 Android)的设计定位不同,对界面修改的支持也截然不同。下面从界面修改能力、API 设计、替代方案和实践建议等方面进行分析,对比两者在为大模型辅助决策时的作用。
2025-04-23 15:55:39
1515
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人