python机器学习之基于内容的推荐算法中推荐麻辣香锅菜品实战(附源码)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

推荐算法相信大家都不陌生,日常生活的各种APP都会根据你的喜好和特征来给你推荐,接下来详细介绍一下其中的基于内容的推荐算法

基于内容的模式起源于信息检索领域,这种模式是以物品的内容为基础,推荐的原理是分析系统的历史数据,提取对象的内容特种和用户的兴趣偏好。

这里关键的环节是计算被推荐对象的内容特征和用户模型的兴趣特征二者之间的相似性。基于内容的推荐算法不需要大量的用户数据,广泛使用于大量文本信息的场合。

问题描述:你经常到一家店去吃麻辣香锅,老板开发了一个菜品推荐程序,老板先整理出店里各种菜品的口味记录到数据文件中,在你点菜时,程序分析出你的历史评价得知你喜欢的菜品,并据此推荐你可能喜欢的菜品

数据集请点赞关注收藏后评论区私信博主要

问题分析:推荐算法使用的是各个菜品的口味特征为文本类型,可以考虑构建taste特征的tifdf矩阵,对文本信息向量化处理,然后使用距离度量方法,计算相似度,然后推荐。

数据如下

评论 35
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值