hadoop纠删码基本原理

        Hadoop纠删码(Erasure Coding, EC)是通过数学编码降低存储冗余的核心技术,其原理与实现可归纳如下:

‌一、纠删码基本原理‌

‌        数据分块与校验计算‌:将原始数据划分为‌k个数据单元‌,通过数学算法(如Reed-Solomon)生成‌m个校验单元‌。任意丢失不超过m个单元(包括数据单元或校验单元)时,可通过剩余单元恢复原始数据。

示例:RS(6,3)策略将数据分为6块,生成3个校验块,最多允许3个单元丢失。

‌        容错与恢复逻辑:‌每个校验单元的计算基于线性代数矩阵运算(如异或操作或伽罗华域乘法);恢复过程通过解码算法逆向推导丢失单元,依赖剩余数据的线性组合重建丢失内容。

二、HDFS中的纠删码实现‌

        ‌存储策略替换副本机制‌:默认三副本策略存储效率为33%(300MB文件占用900MB空间),而EC策略(如RS-6-3)存储效率提升至66%(300MB文件占用500MB空间);

        支持多种策略配置,如RS-10-4(10数据块+4校验块)、XOR-2-1(2数据块+1校验块)。

        ‌‌条带化存储‌:数据按固定大小(如1024KB)切分成条带单元,分散存储至不同DataNode;

        ‌编解码操作‌:客户端或DataNode负责数据编码生成校验块,读取时触发解码恢复。

‌策略管理命令‌

        hdfs ec -listPolicies:查看当前支持的EC策略;

        hdfs ec -setPolicy -path <路径> -policy <策略名>:为指定路径配置EC策略。

‌        硬件依赖‌:编解码过程需消耗额外CPU资源,可能影响集群性能;

‌        恢复延迟‌:数据恢复需通过计算完成,相比副本直接读取耗时更长;

‌        兼容性限制‌:Hadoop 2.x客户端需适配才能支持EC功能。

### Hadoop Erasure Coding Principle In Hadoop, erasure coding is an alternative to replication that provides higher storage efficiency while maintaining data durability and availability. Instead of replicating blocks multiple times, which consumes significant storage space, erasure coding splits files into smaller pieces called fragments or shards, applies mathematical algorithms to generate additional parity information, and distributes both original and parity data across different nodes within the cluster. The process begins by dividing each file into fixed-size chunks known as stripes. Each stripe consists of several cells where actual user data resides along with corresponding parity cells generated through encoding functions such as Reed-Solomon codes[^1]. For example, using a (6+3) scheme means six units are used for storing raw data plus three extra ones reserved exclusively for redundancy checks via parity bits. When reading from striped files encoded with erasure coding, only enough parts need retrieving based on configured policies without having all components present simultaneously; thus reducing network traffic significantly compared to traditional full-replication methods when recovering lost segments due to node failures during operation periods [^2]. ```python from hadoop.erasure_coding import ErasureCodingPolicy policy = ErasureCodingPolicy(cell_size=8*1024, num_data_units=6, num_parity_units=3) encoded_chunks = policy.encode(raw_bytes=b'example data') recovered_data = policy.decode(encoded_chunks[:9]) # Assume first nine chunks available after failure recovery. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jiedaodezhuti

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值