Python cffi 初探

新建立一个 ext_build.py 用于生成扩展

# ext_build.py
import numpy as np
import cffi

ffi = cffi.FFI()

ffi.cdef("""int add(int a, int b);""")
ffi.cdef("""int sub(int a, int b);""")

ffi.set_source('_ext', """
    int add(int a, int b)
    {
        return a + b;
    }
    int sub(int a, int b)
    {
        return a - b;
    }
""")

if __name__ == '__main__':
    ffi.compile(verbose=True)

ffi.cdef 表示声明一个函数,ffi.set_source 第一个参数为扩展模块的名字,第二个参数为函数的定义。
然后执行 python ext_build.py

在 Windows 系统下大概会有如下显示

generating .\_ext.c
(already up-to-date)
the current directory is '**省略**'
running build_ext
building '_ext' extension
C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\BIN\x86_amd64\cl.exe /c /nologo /Ox /W3 /GL /DNDEBUG /MD -IC:\ProgramData\Anaconda3\include -IC:\ProgramData\Anaconda3\include "-IC:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\INCLUDE" "-IC:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\ATLMFC\INCLUDE" "-IC:\Program Files (x86)\Windows Kits\10\include\10.0.10240.0\ucrt" "-IC:\Program Files (x86)\Windows Kits\NETFXSDK\4.6.1\include\um" "-IC:\Program Files (x86)\Windows Kits\8.1\include\\shared" "-IC:\Program Files (x86)\Windows Kits\8.1\include\\um" "-IC:\Program Files (x86)\Windows Kits\8.1\include\\winrt" "-ID:\Microsoft Visual Studio\VC98\atl\include" "-ID:\Microsoft Visual Studio\VC98\mfc\include" "-ID:\Microsoft Visual Studio\VC98\include" /Tc_ext.c /Fo.\Release\_ext.obj
_ext.c
C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\BIN\x86_amd64\link.exe /nologo /INCREMENTAL:NO /LTCG /DLL /MANIFEST:EMBED,ID=2 /MANIFESTUAC:NO /LIBPATH:C:\ProgramData\Anaconda3\libs /LIBPATH:C:\ProgramData\Anaconda3\PCbuild\amd64 "/LIBPATH:C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\LIB\amd64" "/LIBPATH:C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\ATLMFC\LIB\amd64" "/LIBPATH:C:\Program Files (x86)\Windows Kits\10\lib\10.0.10240.0\ucrt\x64" "/LIBPATH:C:\Program Files (x86)\Windows Kits\NETFXSDK\4.6.1\lib\um\x64" "/LIBPATH:C:\Program Files (x86)\Windows Kits\8.1\lib\winv6.3\um\x64" "/LIBPATH:D:\Microsoft Visual Studio\VC98\mfc\lib" "/LIBPATH:D:\Microsoft Visual Studio\VC98\lib" /EXPORT:PyInit__ext .\Release\_ext.obj /OUT:.\_ext.cp36-win_amd64.pyd /IMPLIB:.\Release\_ext.cp36-win_amd64.lib
_ext.obj : warning LNK4197: 多次指定导出“PyInit__ext”;使用第一个规范
  正在创建库 .\Release\_ext.cp36-win_amd64.lib 和对象 .\Release\_ext.cp36-win_amd64.exp
正在生成代码
已完成代码的生成

然后目录下生成了 _ext.cp36-win_amd64.pyd 这一个包。

新建一个 demo 测试一下

# demo.py
from _ext import ffi, lib

print(lib.add(2, 3))
print(lib.sub(2, 3))

输出

5
-1

通过。

### 回答1: CFFI 是 C Foreign Function Interface 的缩写,是 Python 用来调用 C 函数的接口库。CFFI 提供了两个不同的方式来调用 C 函数:API 模式和 ABI 模式。 API 模式: API 模式是最常用的一种方式,它需要手动编写一个包含 C 函数声明的 C 源代码文件,然后使用 CFFI 手动编译这个 C 源代码文件成动态链接库。在 Python 中,我们通过 CFFI 提供的 FFI 对象来加载这个动态链接库并调用其中的 C 函数。 下面是一个简单的例子,假设有一个名为 `add` 的 C 函数,其定义在文件 `add.c` 中: ``` int add(int a, int b){ return a + b; } ``` 我们可以使用 CFFI 编译这个 C 文件并调用其中的函数: ``` from cffi import FFI # 创建一个 FFI 对象 ffi = FFI() # 定义要调用的 C 函数 ffi.cdef(""" int add(int, int); """) # 编译动态库 lib = ffi.dlopen('./add.so') # 调用 C 函数 result = lib.add(1, 2) print(result) # 输出 3 ``` ABI 模式: ABI 模式是一种更高级别的方式,它不需要手动编写 C 源代码文件,而是直接使用 C 库中已经存在的动态链接库文件。在 Python 中,我们通过 CFFI 提供的 FFI 对象来加载这个动态链接库并调用其中的 C 函数。 下面是一个简单的例子,假设有一个名为 `add` 的 C 函数,其定义在动态链接库文件 `libadd.so` 中: ``` int add(int a, int b){ return a + b; } ``` 我们可以使用 CFFI 直接调用这个 C 函数: ``` from cffi import FFI # 创建一个 FFI 对象 ffi = FFI() # 定义要调用的 C 函数 ffi.cdef(""" int add(int, int); """) # 加载动态库 lib = ffi.dlopen('./libadd.so') # 调用 C 函数 result = lib.add(1, 2) print(result) # 输出 3 ``` 总之,CFFI 提供了非常方便的接口来调用 C 函数,可以大大提高 Python 程序的性能和扩展性。 ### 回答2: Python中的CFFI库是一种用于调用C代码的工具。CFFI提供了一个简单的接口,使得在Python中调用C代码变得更加容易。 要使用CFFI调用C,首先需要在Python中安装CFFI库。可以使用pip工具来安装,命令如下: ``` pip install cffi ``` 安装完成后,可以开始编写调用C代码的Python程序。首先需要创建一个包含C代码的C源文件,比如example.c。然后在Python文件中导入并使用CFFI库来调用C代码。 下面是一个简单的示例代码: ```python import cffi # 创建CFFI接口对象 ffi = cffi.FFI() # 将C代码添加到CFFI接口中 ffi.cdef(""" int add(int, int); """) # 加载C代码并编译为动态库 lib = ffi.dlopen("./example.so") # 调用C代码函数 result = lib.add(2, 3) print(result) ``` 在这个示例中,我们定义了一个名为add的C函数,用于求两个整数的和。然后使用CFFI加载这个C函数所在的动态库,并调用它来计算2和3的和。 注意,在调用C函数之前,需要先使用CFFIcdef方法将C函数的声明添加到CFFI接口中。然后通过dlopen方法加载C代码对应的动态库,才能正确地调用C函数。 总之,使用CFFI可以很方便地在Python中调用C代码。通过声明C函数接口并加载动态库,就可以实现Python与C之间的无缝交互。 ### 回答3: Pythoncffi是一个用于调用C语言函数的库,它提供了一个简单且高效的接口,使Python可以轻松地与C代码进行交互。 使用cffi调用C语言函数的过程非常简单。首先,您需要编写一个C语言的源文件,其中包含您要调用的函数的实现代码。然后,使用cffi的声明语法来描述这些函数和类型,并将它们与Python代码进行绑定。 在Python代码中,您需要使用cffi库导入C语言的函数和类型,并设置好传递参数和接收返回值的方式。一旦C函数被调用,cffi会负责将参数传递给C代码,并处理C代码的返回值,以便在Python中使用。 除了提供简单的函数调用功能外,cffi还可以处理复杂的数据类型和结构体,并支持将C代码编译为动态链接库,以便在Python中重复使用。 总之,cffi是一个功能强大且易于使用的库,可以让Python与C语言进行无缝的交互。它为Python开发者提供了更大的灵活性和性能优势,并且对于那些需要与C代码进行交互的项目来说,是一个不可或缺的工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值