因果系列文章(7)——干预工具(下)

本文深入探讨了因果分析中的干预工具,包括路径系数、回归系数、中介和工具变量的概念。通过线性系统解释了连续变量的因果效应,并介绍了如何计算变量之间的直接效应。此外,还提到了关河因果系统在模拟干预和评估因果效应中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在上一节我们继续学习了有关干预的知识,具体来说,学习了三种重要的干预工具:后门调整、前门调整、逆概率加权。在本节中,我们从线性系统开始入手,介绍变量连续时的因果效应如何表达,并学习中介、工具变量等概念。

本章将结束因果分析中干预的讲解,在理论与工具之外我会引入系统——关河因果分析系统来举例说明干预的过程,便于大家理解。

路径系数&回归系数

之前介绍的模型中变量都是二值的,现实中的很多事件变量都是连续的。比如我们想知道课外辅导和考试成绩的关系、上网学慕课和未来找工作的关系等等。那么一种最简单的建模方法就是用线性系统建模。具体来说,变量之间的关系都是线性的。而之前使用概率来表示变量之间依赖关系的形式就要相应的变成期望的形式了。

比如之前表示,以 Z 为条件, Y 和 X 是相互独立的,我们写作

P(Y|X,Z)=P(Y|Z)

而对于连续变量,我们就写作

E[Y|X,Z]=E[Y|Z]

条件期望也就可以写成线性的形式

E[Y|X1=x1,X2=x2,…,Xn=xn]=r0+r1x1+r2x2+···+rnxn

其中 r1,r2,…,rn 被称为回归系数(或者相关系数)。这些回归系数 ri 的值与 xi 的值无关,只与谁是回归因子有关。换句话说, 无论Xi=1 、 Xi=2 还是 Xi=312.3 ,只要我们选择了 Xi 作为回归因子,那么回归系数就是不变的。

回归系数是表示变量之间的统计特征,也就是我们站在因果关系之梯第一层级用观测数据归纳出的,它只是对客观事实的描述, y=r1x+r2z+ 不能说明 X 和 Z 是 Y 的因。与回归系数不同,路径系数则反映的是变量之间的因果关系或者结构关系,是因果关系之梯第二层级的信息。比如我们定义 Y=3X+U 这就说明 X 和 Y 之间有因果关系路径X→Y ,且路径系数为3。每一个路径系数都表示一条因果关系。在《Causal Inference in Statistics》一书中,路径系数用 α,β 来表示,而回归系数用 r1,r2 等等来表示。

考虑下图中的图模型。其中 a,b,c,d,e 分别标出了五条因果关系路径的路径系数。

 

图1

假设我们想要计算 Z 对 Y 的因果效应的总和。那么计算的方式就是将每一条因果路径上的因果系数与对应变量相乘,然后对所有非后门路径求和。

Y=dZ+eW+UY

=dZ+e(bX+cZ)+UY+eUW

=(d+ec)Z+ebX+UY+eUW 

这表明对 Z 每增加一个单位, Y 将随之增加 d+ec 个单位。比较一下, d+ec 、 eb 其实就是回归系数,是 Z 对&nb

### 文本因果推断的方法与实现 文本因果推断是一种结合自然语言处理(NLP)因果推断理论的技术,旨在通过分析文本数据来揭示变量之间的因果关系。以下是关于这一主题的关键内容: #### 1. 因果推断的核心概念 因果推断的目标是从观察到的数据中提取因果关系,而不仅仅是相关性。在自然语言处理领域,这通常涉及从大量的文本语料库中发现潜在的因果机制。例如,在新闻文章摘要生成过程中,可以通过因果推断技术理解事件之间的时间顺序及其影响[^2]。 #### 2. 基于机器学习因果推断方法 现代因果推断方法广泛利用机器学习技术,特别是深度学习模型。这些方法能够自动捕捉复杂的模式并估计因果效应。具体来说,以下几种方法被广泛应用: - **倾向得分匹配 (Propensity Score Matching)**:这种方法用于平衡实验组对照组之间的协变量分布,从而减少偏差。它可以应用于基于文本的分类任务,比如情感分析或主题建模[^3]。 - **反事实推理 (Counterfactual Reasoning)**:该方法构建了一个假设场景下的预测结果,帮助评估某个特定干预措施的效果。对于文本数据而言,这意味着模拟如果某些条件发生变化,则文档的内容可能会如何改变[^1]。 #### 3. 技术实现框架 为了有效实施上述方法,研究人员开发了一系列工具技术栈支持整个流程: - 数据预处理阶段包括分词、去停用词等常规操作; - 特征工程部分则可能采用TF-IDF向量化或者BERT嵌入等方式表示输入序列; - 最终训练神经网络架构完成目标函数优化过程——如回归树集成算法XGBoost/Catboost LightGBM 或者 Transformer-based 的Seq2seq 架构来进行端到端的学习。 下面给出一段简单的Python代码示例展示如何使用Scikit-Learn库执行基本的倾向评分计算: ```python from sklearn.linear_model import LogisticRegression import pandas as pd def calculate_propensity_scores(df, treatment_col='treatment', covariates=['age','income']): X = df[covariates] y = df[treatment_col] model = LogisticRegression() model.fit(X,y) propensity_scores = model.predict_proba(X)[:,1] return pd.Series(propensity_scores,index=df.index,name="propensity_score") dataframe_with_pscores = dataframe.copy().assign(**calculate_propensity_scores(dataframe)) ``` 此脚本定义了一个辅助功能`calculate_propensity_scores()` , 它接收一个DataFrame作为参数,并返回一个新的Series对象包含每个样本对应的倾向分数值。 #### 4. 应用案例 实际应用方面,文本因果推断已被成功部署至多个行业解决方案之中,诸如医疗健康记录解读、社交媒体舆情监控等领域皆有涉猎。例如,在药物副作用监测项目里,通过对患者描述症状的相关帖子进行自动化解析,再辅以因果关联挖掘手段,有助于提前预警未知风险因素的存在可能性。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值