Trae中Qwen3-Coder-Plus模型

image

背景

      Qwen3-Coder 是由阿里巴巴云 Qwen 团队开发的一个开源大型语言模型系列,专注于代码生成与智能编程。它的核心产品是 Qwen3-Coder-480B-A35B-Instruct,一个拥有480亿参数的混合专家模型(MoE),激活参数为35亿。它支持256K令牌的原生上下文长度,并可通过扩展方法达到100万令牌。关于Cline与Qwen3-Code CLI命令行,参考官方文档即可,本文不赘述。

配置

        我们在Trae国际版中配置比较简单

image

Finish

image

实践

      我们之前文章CodeBuddy的RAG知识库尝试中场景,进行验证

提示词

#Workspace 制定当前文件TaskMcpCallServerServices重构策略,  增加代码的可测试性,包含unit testing直接实施修改代码

image

1)新增加的代码文件,自带注释
2)沿用阿里派系Service实现类后缀Impl
3)单元测试修改了,但还是存在问题。

image

修复单元测试

提示词

TaskMcpCallServerServicesTest测试类, 3个方法还是失败,请修复 TaskMcpCallServerServicesTest.java #Workspace

发起再次对话,成功修复,此过程没有任何人为参与。

image

过程中IDE自动调用MCP执行mvn test,评估单元测试结果,以便进行修复

Unit Testing passed

image

本文代码在这儿,仅供参考

登录 - Gitee.com

费用

共计2次对话

image

qwen3-coder-plus

•token总数:1,000,000
•剩余token:811,701

已使用token = 总数 - 剩余已使用token = 1,000,000 - 811,701 = 188,299

<think>好的,用户想知道如何在Trae中集成或使用Claude-3.5-Sonnet模型。首先,我需要确认Trae是什么。可能用户指的是某个框架或工具,比如可能拼写错误,比如Trame、TRAE或者某个特定库。但根据上下文,可能是指某个AI模型部署平台或者API工具。假设Trae是一个支持模型集成的平台,用户需要添加Claude-3.5-Sonnet。 接下来,我需要回忆Claude-3.5-Sonnet的信息。根据引用[^1],Claude 3.5 Haiku即将发布,但用户提到的是Sonnet。可能用户混淆了型号,需要确认。不过根据引用[1],Haiku是新的模型,而Sonnet是之前的版本。可能用户想用最新的Haiku,但问题中提到的是Sonnet,所以可能需要说明两者的区别。 然后,考虑如何在Trae中添加模型。通常,集成模型需要API访问、SDK使用或本地部署。需要分步骤说明:首先获取API访问权限,安装必要的库,配置环境变量,编写调用代码,处理异常,测试等。同时需要检查Trae是否支持Claude的API,或者是否需要通过HTTP请求直接调用。 可能的问题包括:如何获取API密钥,如何处理认证,如何构造请求体,如何处理响应。需要确保用户按照正确的步骤操作,比如注册Anthropic账户,获取API密钥,安装anthropic库等。 另外,需要引用提供的参考资料,特别是引用[^1]提到的Claude 3.5的性能和发布信息,可能需要提醒用户注意模型版本和可用性,比如Haiku即将发布,是否会影响当前集成Sonnet的步骤。 还需要考虑用户可能遇到的常见问题,比如环境配置错误、权限问题、网络问题等,建议进行测试和调试。最后,生成相关问题,帮助用户进一步了解模型集成后的优化和应用场景。</think>要在Trae中集成Claude-3.5-Sonnet模型,需要遵循以下步骤(假设Trae是基于Python的AI开发框架): ### 一、环境准备 1. 安装最新版Anthropic SDK ```bash pip install anthropic>=0.21.0 ``` 2. 配置API密钥 ```python import anthropic client = anthropic.Anthropic( api_key="sk-your-api-key-here" ) ``` ### 二、模型调用实现 ```python def claude_inference(prompt: str, model="claude-3.5-sonnet-20240620", max_tokens=1000): message = client.messages.create( model=model, max_tokens=max_tokens, messages=[ {"role": "user", "content": prompt} ] ) return message.content[0].text ``` ### 三、Trae框架集成 1. 创建模型适配器类 ```python class ClaudeAdapter(TraeBaseModel): def __init__(self, config): super().__init__(config) self.client = anthropic.Anthropic(api_key=config[&#39;api_key&#39;]) def predict(self, input_data): response = self.client.messages.create( model=self.config[&#39;model_version&#39;], max_tokens=self.config[&#39;max_tokens&#39;], messages=[{"role": "user", "content": input_data}] ) return self._format_output(response) ``` ### 四、配置参数示例 ```json { "model_type": "claude", "api_key": "sk-xxx", "model_version": "claude-3.5-sonnet-20240620", "max_tokens": 4096, "temperature": 0.7 } ``` 根据Anthropic的最新公告,Claude 3.5 Haiku模型将在本月晚些时候发布,其编码能力已超越GPT-4o。集成时需注意模型版本的更新维护。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值