背景
Grok 4是xAI公司自2023年推出首代大模型以来的第四次重要迭代,被官方宣称是“最新、最强大的旗舰模型”,马斯克更是称其为“世界上最智能AI”。该模型在GBQA(博士级问题集)、AMC 25(美国数学邀请赛)、Live Coding Benchmark(编程能力测试)、HMMT(哈佛-MIT数学竞赛)、USAMO(美国数学奥林匹克)等测试中均表现出色,展现了其强大的性能。Grok 4于2025年7月10日正式发布,当地时间2025年7月9日晚,xAI公司旗下AI聊天机器人的最新版本Grok 4正式发布。
Trae国际版是字节跳动推出的全球首款AI原生集成开发环境(AI IDE),Trae国际版中已经集成Grok4大模型。
实践
以开源项目ThingBroad为上下文,提示词如下,要求对模块进行重构
@workspace #Codebase 运用OOA/OOD/OOP分析与重构当前工程common/actor模块中所有java代码文件。按如下角色执行
角色:
OOP编程专家
简介:
资深面向对象编程(OOP)专家,拥有15年以上软件架构设计经验,精通Java、C++、C#、Python等多种语言的OOP实现。曾主导多个大型企业级系统的架构设计,在金融、电商和物联网领域有丰富的实践经验。擅长将业务需求转化为优雅的面向对象设计,平衡系统灵活性与性能要求。
技能:
OOP核心概念(封装/继承/多态/抽象)的深度应用
23种GoF设计模式的实战经验
SOLID原则的严格遵循与灵活运用
UML建模(类图、时序图、状态图等)
代码重构与遗留系统现代化
多范式编程(函数式/OOP混合)
领域驱动设计(DDD)实践
性能优化与内存管理
规则:
严格遵循SOLID设计原则
优先使用组合而非继承(组合优于继承)
保持高内聚低耦合(单一职责原则)
注重代码可读性和可维护性(清晰命名、适当注释)
平衡设计复杂度与实际需求
考虑未来扩展性与当前实现成本
让我们一步一步地进行OOP设计和实现:
工作流程(输出中间步骤和中间执行结果):
需求分析:
与领域专家深入沟通
识别核心业务实体和关键行为
确定系统边界和对象职责
分析系统变化点和稳定点(识别可能的变化)
领域建模:
创建领域概念模型(业务名词提取)
识别对象关系(关联、聚合、组合)
定义聚合根和值对象
绘制初步领域模型图
类设计:
设计类层次结构(继承树)
定义接口和抽象类(契约设计)
规划类方法和属性(行为与状态)
确定访问修饰符和可见性
模式应用:
选择合适的设计模式(创建型/结构型/行为型)
实现常见模式(工厂/策略/观察者/装饰器等)
避免过度设计(简单设计优先)
记录模式应用决策
代码实现:
编写符合OOP原则的代码
实现必要的抽象和多态
添加单元测试(测试驱动开发)
编写清晰的文档注释
重构优化:
识别代码坏味道(重复代码、过长方法等)
应用重构技术改进(提取方法、搬移字段等)
提升代码可读性(命名、结构优化)
持续集成验证
生成结果
代码存在少许包导入的异常问题,缺少 java.util.*包
修复后,可以编译通过,归纳如下:
1)自动生成文件许可头
2)没有生成Unit Testing.
3)缺少代码注释生成
CodeBuddy单文件评审
我们把生成文件交由CodeBuddy进行单文档评审
代码评审基于Qwen3-Thinking模型
提示词
As a Developer, I want to ask you to perform a Code review that file provide to you. Consider previous comments noted below and avoid repeating similar recommendations. If you spot a recurring issue, skip it.
For security issues or sensitive information leaks, give me detail solution. Please make sure to use Simplified Chinese as the language for interactions with users, unless it is for specific proprietary terms or situations where English words are more appropriate. Make your feedback clear, concise, and actionable, with specific improvement recommendations.
Review the code snippet below based on these criteria:
Syntax and Style: Look for syntax errors and deviations from conventions. Performance Optimization: Suggest changes to improve efficiency. Security Practices: Check for vulnerabilities and hard-coded secrets (mask half the info). Error Handling: Identify unhandled exceptions or errors. Code Quality: Look for code smells, unnecessary complexity, or redundant code. Bug Detection: Find potential bugs or logical errors.”
评审输出内容共6点建议相比CodeBuddy较多
代码审查DeepSeek R1
在相同提示词,也是输出6点,并且汇总表格。
基于DeepSeekR1模型optimize指令优化代码
Gemini 2.5 Pro代码审查
Claude Sonnet 4.0代码审查
总体4点建议清晰,配置好看图标。
Kimi-K2模型代码审查
K2模型输出比较简单,5个建议。
Summary
GrokV4生成代码质量并不最高的,还可以进一步优化,其Coding能力进一步测试与验证。我们在实际开发中,可以结合多个AI智能体进行协作。如上我们使用一个模型生成代码,另一个模型进行辅助代码审查,多个智能体协同将成为趋势。