解决Dify的Ollama插件添加模型时保存成功但模型为空的问题

问题的根因

  • Dify默认配置对插件安装过程的​​超时限制较短​​,且依赖下载可能因网络问题失败
  • 确保 Ollama 插件有足够时间完成安装,并通过国内镜像源加速依赖下载

解决方法

假定你已经在Windows环境完成了Docker安装、Dify镜像的下载和启动、Ollama的本地安装,要在Dify里的Ollama插件添加大模型:

image

先把Dify镜像停掉:去dify/docker目录下执行

docker-compose down

可以看到关联的镜像状态都是Removed

image

编辑dify/docker/docker-compose.yaml,在environment部分增加

PYTHON_ENV_INIT_TIMEOUT: 600 # 延长超时时间(默认值较低可能导致安装超时)
PIP_MIRROR_URL: "Simple Index" # 替换为国内镜像源加速依赖安装

重启dify

docker-compose up -d

先看下Docker的日志,出现了一些相关的信息:
 

image


等到Ollama安装完成时,再回到Dify的Ollama添加大模型,发现之前保存的模型都出现,可以继续下一步了,Good Job!

image

其他的排查手段和配置更改

在排查过程中,我还做了一些其他配置变更,关系应该不大但是还是记录下,便于后续查阅。

如何判断Docker中运行的Dify能访问本地安装的Ollama?

Windows/Mac是默认支持的,Linux需要一些配置。进入Dify运行中的镜像,执行curl http://host.docker.internal:11434确认。还可以执行curl http://host.docker.internal:11434/api/tags确认ollama已安装的模型。

image

Ollama是否要手动启动(执行ollama serve)?

Windows确定它在运行即可,如果在运行就不需要再次执行。

image

是否要降低Ollama版本到0.15.x?

没必要。Ollama的版本号遵循语义化版本规范,看上去比较跳跃:如1.6.0 → 0.15.8 → 1.4.1,某些博文提到添加模型不成功可以通过降低版本到0.15.x来解决。但我在最新的1.6.0通过上文中的配置也解决了这个问题。

Ollama的环境变量是否是必须的?

也许不是必须的,但是在我之前的尝试里已经添加过了:OLLAMA_HOST:0.0.0.0OLLAMA_ORIGING:*

配置变更后重启Dify服务的方法

配置变更后一般都要重启一下。这步不是在Docker Desktop,而是在Dify目录下,cmd中分别执行:

docker-compose down
docker-compose up -d

Dify配置页面“系统模型设置”提示“系统模型尚未完全配置”是否有影响?

没有任何影响。实际上当你配置好LLM和TEXT EMBEDDING两种模型后,这个提示就会消失。

附:Docker+DeepSeek+Dify安装全流程简述(Win10版)

为了便于查阅和后续的复用,我简单总结了一下整个流程。完整版可以看基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程

  1. 下载安装docker、WSL,确定Docker Desktop启动时右下角出现Engine running
    1.1 (可选)迁移docker镜像路径:Settings->Resources->Disk image location
    1.2 (可选,国内一般必须)配置国内镜像源:Settings-> Docker Engine
    1.3 (可选)拉取镜像,cmd中docker pull hello-world
  2. 安装Omalla及DeepSeek等大模型(本地版)
    2.1 Ollama官网下载
    2.2 安装,(可选,可以通过特殊方法改变安装路径), cmd中ollama -v可以看到版本即表示安装成功
    2.3 安装DeepSeek等大模型
    2.3.1 在Ollama官网的models中找到对应模型及版本,点击复制按钮获取全名,以deepseek-r1:1.5b为例,cmd输入ollama run deepseek-r1:1.5b开始下载
    2.3.2 下载完成即进入对话模式
    2.4 (可选)安装ChatBox AI
    2.4.1 选择Ollama API即可图形化使用本地的DeepSeek
    2.4.2 连接Ollama失败时新增两个环境变量OLLAMA_HOST:0.0.0.0OLLAMA_ORIGING:*,需重启Ollama
  3. 安装Dify
    3.1 去Dify的Github,可以git clone也可以下载最新版的zip包直接解压到目标路径
    3.2 .env.example复制并重命名为.env
    3.3 在Dify目录拉去依赖docker-compose up -d,完成后在docker中确认镜像都在运行中
  4. Dify配置
    4.1 进入本地Dify:http://127.0.0.1/,创建管理员用户
    4.2 右上角头像,设置->模型供应商,添加Ollama插件
    4.3 Ollama插件中添加已安装的模型:模型名称为带版本号的全称,URL为http://host.docker.internal:11434。如果添加提示成功但仍然没有模型,参考正文的解决方法。
  5. 创建应用,开始使用。

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

因篇幅有限,仅展示部分资料,需要点击文章最下方名片即可前往获取

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

因篇幅有限,仅展示部分资料,需要点击文章最下方名片即可前往获

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。


因篇幅有限,仅展示部分资料,需要点击文章最下方名片即可前往获

四、AI大模型商业化落地方案

因篇幅有限,仅展示部分资料,需要点击文章最下方名片即可前往获

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

<think>我们正在处理用户关于DifyOllama集成的问题。用户报告在Dify添加Ollama模型显示成功,但没有实际反应。根据引用资料,这是一个常见问题,通常与配置或超设置有关。分析引用内容: [^1]提到在升级到Dify1.0.1后,通过Ollama添加模型无反应或出现Internal ServerError。用户填写的模型URL是http://host.docker.internal:11434。[^2]提供了完整的解决方案,包括修改.env文件、调整docker-compose.yaml中的超参数、重启服务等步骤。[^3]也提到在.env文件中添加特定配置项。综合以上,我们给出以下解决步骤:步骤1:修改.env配置文件在Dify项目目录下,找到.env文件,添加或修改以下配置:PIP_MIRROR_URL=https://mirrors.aliyun.com/pypi/simple#使用阿里云镜像加速pip安装CUSTOM_MODEL_ENABLED=trueOLLAMA_API_BASE_URL=http://host.docker.internal:11434PROVIDER_OLLAMA_API_BASE_URL=http://host.docker.internal:11434#引用[3]中提到的PLUGIN_WORKING_PATH=/app/cwd#引用[3]中提到的注意:这里我们结合了引用[2]和引用[3]的建议。其中,引用[3]特别强调了添加PROVIDER_OLLAMA_API_BASE_URL和PLUGIN_WORKING_PATH。步骤2:修改docker-compose.yaml找到docker-compose.yaml文件中plugin_daemon服务的环境变量部分,将两个超参数调大:PYTHON_ENV_INIT_TIMEOUT:${PLUGIN_PYTHON_ENV_INIT_TIMEOUT:-420}#默认值改为420秒PLUGIN_MAX_EXECUTION_TIMEOUT:${PLUGIN_MAX_EXECUTION_TIMEOUT:-1000}#默认值改为1000秒步骤3:重启Dify服务1.停止当前运行的Dify服务:dockercompose down2.重新加载Docker配置(如果更改了系统级的Docker配置,否则可跳过):systemctldaemon-reloadsystemctlrestart docker3.重新启动Dify:dockercompose up-d步骤4:添加Ollama插件并检查日志1.在Dify的Web界面上再次尝试添加Ollama插件(如果之前添加过,可能需要先删除再重新添加)。2.添加模型,并观察后台日志,特别是plugin_daemon容器的日志:docker logs-fdify_plugin_daemon_1#注意容器名称可能根据实际项目命名有所不同如果看到类似以下日志,表示成功:plugin_daemon-1 |2025/05/1017:37:36 stdio.go:160: [INFO]plugin langgenius/ollama:0.0.6:Installedmodel:ollama注意:如果添加插件没有反应,可以尝试二次添加(引用[2]中提到可能需要二次添加)。如果按照以上步骤操作后问题仍然存在,请检查:-Ollama服务是否在本地运行且可以通过http://host.docker.internal:11434访问(在Docker容器内部)。也可以尝试在docker-compose.yaml中直接指定Ollama服务的IP(如果host.docker.internal解析有问题,可以改为宿主机的局域网IP,但注意这样可能会在宿主机IP变化失效)。-确保Ollama服务已经下载了所需的模型(例如,在宿主机上运行`ollamapull llama3`下载模型)。以上步骤应能解决添加模型无反应的问题。相关问题:1.如何验证Ollama服务在本地运行正常?2.在Dify中使用Ollama模型有哪些常见错误?3.如何为Dify中的Ollama模型配置不同的参数?</think>### Dify Ollama 添加模型显示成功但无反应的解决方法 根据引用资料分析,该问题通常由**配置缺失或超参数不足**导致。以下是已验证的解决步骤: #### 步骤1:修改环境变量文件(.env) 在Dify项目目录的`.env`文件中添加以下配置: ```env # 加速依赖安装 PIP_MIRROR_URL=https://mirrors.aliyun.com/pypi/simple # 启用Ollama支持 CUSTOM_MODEL_ENABLED=true OLLAMA_API_BASE_URL=http://host.docker.internal:11434 PROVIDER_OLLAMA_API_BASE_URL=http://host.docker.internal:11434 # 关键配置[^3] PLUGIN_WORKING_PATH=/app/cwd # 工作目录配置[^3] ``` > **注意**:`http://host.docker.internal:11434`是Docker容器访问宿主机的固定地址,无需改为实际IP[^2]。 #### 步骤2:调整超参数(docker-compose.yaml) 修改`docker-compose.yaml`中`plugin_daemon`服务的超设置: ```yaml plugin_daemon: environment: PYTHON_ENV_INIT_TIMEOUT: ${PLUGIN_PYTHON_ENV_INIT_TIMEOUT:-420} # 从默认120→420秒[^2] PLUGIN_MAX_EXECUTION_TIMEOUT: ${PLUGIN_MAX_EXECUTION_TIMEOUT:-1000} # 超上限提升 ``` #### 步骤3:重启Dify服务 ```bash # 停止服务 docker compose down # 重载配置并重启 systemctl daemon-reload systemctl restart docker docker compose up -d ``` #### 步骤4:验证插件状态 1. 在Web界面重新添加Ollama插件 2. 查看`plugin_daemon`容器日志: ```bash docker logs -f dify_plugin_daemon_1 # 跟踪实日志 ``` 成功标志:出现`Installed model: ollama`提示[^2] #### 常见问题排查 1. **浏览器兼容性**:使用Chrome/Firefox,避免兼容性问题[^1] 2. **模型预加载**:确保Ollama服务已下载模型(宿主机执行`ollama pull llama3`) 3. **网络连通性**:在Dify容器内测试访问Ollama: ```bash docker exec -it dify_worker_1 curl http://host.docker.internal:11434 ``` > **核心原理**:该问题通常由插件初始化超或容器间通信配置缺失导致。修改超参数确保大型模型有足够加载间,`host.docker.internal`实现容器到宿主机的可靠寻址[^2][^3]。 --- ### 相关问题 1. 如何验证Ollama服务在Docker容器中是否可达? 2. DifyOllama集成需要哪些最低配置参数? 3. 当Ollama模型加载超Dify会返回什么错误代码? [^1]: dify1.0.0版本以上添加通过ollama添加模型无反应或者 internal server error [^2]: dify安装ollama插件OLLAMA模型添加失败问题完整解决方法 [^3]: Dify通过ollama添加模型没反应。亲测有效!!!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值