深度强化学习(一)之脉络梳理

本文介绍了深度强化学习的构成,包括强化学习(RL)和深度学习(DL),并探讨了两者区别。重点讨论了DQN和策略梯度(PG)这两种决策方法,以及它们在实际应用中的优缺点。强化学习通过试错学习工作,奖励设计是核心挑战,可通过贝尔曼方程和TD/MC算法进行优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、技术构成

深度强化学习由两个技术构成:
1)RL:Reinforce Learning 强化学习
2)DL:Deep Learning 深度学习

二、深度学习和强化学习区别

1)强化学习完成两个任务:规划 和 决策
2)深度学习完成:特征映射,提取语义信息。
在这里插入图片描述
规划:达到最终状态,中间采取的一系列动作,不仅对当前状态做反应,还要考虑到未来。

三、两种决策方法

在这里插入图片描述
1)DQN
基于value做决策
易训练
在这里插入图片描述
2)PG:策略梯度,基于状态做决策
优点:非常直接
缺点:比较难训练
在这里插入图片描述
3)两种方法结合ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值