弱监督实例分割方法解析

本文探讨了实例分割任务,它旨在识别并分割图像中的每个物体。提到了prm(peak response map)和ir net在该任务中的应用,并指出语义分割的局限性,即无法区分不同的实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实例分割是类似于目标检测的一个任务,定位出物体大致区域,然后对区域里内容进行分割

prm:class peak response

prm中peak位置不相连,且坐标信息起到了区分实例的作用

 ir net:有一个误区,我开始觉得语义分割画个外接矩形就能区分实例

语义分割结果不能区分实例,prm的peak可以区分实例

同时CAM也不具有区分实例的作用,例如

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值