Stable Diffusion系列(二):ControlNet基础控件介绍

在下载插件时可以看到,ControlNet 插件的星数遥遥领先,远超其他妖艳贱货。究其原因,是因为其大大增强了使用者对图片生成过程的控制能力,图片的生成同时受到提示词和提示图的影响,使得文生图由抽卡游戏变成了一个更具确定性的创作工具。

ControlNet位置位于文生图界面下方,记得要勾选启用,可控类型包括这么点东西:
在这里插入图片描述
接下来我将以喜闻乐见的熊猫花花为例,演示一下关于ControlNet的高端操作
在这里插入图片描述

线稿提取类

Canny:边缘检测

如下图所示,图片的生成效果其实分为两步,第一步是使用canny预处理器提取出图片的线稿,第二步是由模型根据线稿和提示词同时绘图,如果你已经有现成的线稿,记得要把预处理器设为none

### 使用Stable Diffusion WebUI中的img2img功能 #### 启动WebUI并加载img2img模式 为了使用img2img功能,首先需要启动Stable Diffusion WebUI。确保在命令行中加入`--api`参数以便API接口可用[^4]。一旦WebUI成功启动,在界面上可以选择切换至img2img模式。 #### 准备初始图像 img2img允许基于现有图片创建新的变体。上传想要修改的基础图片到指定区域。这一步骤至关重要,因为后续所有的变化都将围绕这张原始图片展开[^5]。 #### 设置主要参数 - **采样器选择**:不同的采样算法会影响最终效果的选择合适的采样器。 - **步数(Steps)**:定义了迭代次数,默认值通常适用大多数情况;增加此数值可能会提高质量但也延长处理时间。 - **CFG Scale (Classifier-Free Guidance)**:控制生成过程遵循提示的程度,较高的值会使结果更加贴近给定的文字描述。 - **Denoising Strength**:决定去噪强度的比例,该比例决定了多少原有的特征会被保留下来以及新增加的变化量。对于轻微调整而言,较低的denoising strength较为合适;而当希望获得完全不同风格的作品时,则应适当增大这个参数[^1]。 #### 应用额外控件 除了上述基本设定之外,还可以利用诸如ControlNet这样的插件来增强对输出的具体方向性的掌控力。例如,通过提供边缘检测或其他形式的引导图层,可以让AI更好地理解哪些部分应该保持不变或是重点改变之处[^3]。 #### 执行转换与查看成果 完成以上配置之后点击“Generate”按钮开始执行转换程序。等待片刻后就能看到由原图演变而来的新作品展示于屏幕上。此时可以根据实际情况进一步微调各项参数直至满意为止。 ```python # 示例Python脚本片段用于自动化测试不同参数组合下的Img2Img性能表现 for denoise_strength in [0.2, 0.5, 0.8]: result = generate_img2img(image_path="input.jpg", denoising_strength=denoise_strength) save_image(result, f"output_{denoise_strength}.png") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊城迷鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值