微调这件小事:训练集中的输入数据该作为instruction还是input?从LLaMA-Factory的源码中寻找答案吧~

在之前的博文中,我们已经了解了LLaMA-Factory框架执行各类任务的流程。今天,我们将深入探讨SFT微调过程中关于数据集的两个关键问题:

  1. 数据集中的instruction和input是如何结合起来生成大模型可以理解的输入的?instruction是不是就是system prompt呢?(之所以会问这个问题,是因为我发现有的数据集将输入作为instruction,有的作为input,而它们在效果上基本没有区别)
  2. 模板(template)是如何起作用的?它如何将文本数据转换为模型可以理解的格式?

这两个问题其实在处理流程上是一体的,由于篇幅限制,我们这里先聚焦于第一个问题。


🎉进入大模型应用与实战专栏 | 🚀查看更多专栏内容


<think>好的,我需要帮助用户了解如何对LLaMA-Factory进行微调以及Qwen源码的解析。首先,用户提到了参考站内的引用,其中引用[2]详细介绍了环境准备和安装步骤。我应该先整理这些信息,确保步骤清晰正确。 接下来,关于微调方法,用户可能想知道具体的操作流程。根据引用[2],微调前需要准备数据集,可能需要配置数据路径。LLaMA-Factory支持多种微调方法,比如LoRA,我需要解释这些方法的基本原理和如何选择参数。同时,启动训练的命令行示例需要准确无误,确保用户能复制使用。 然后是Qwen源码解析部分。用户可能对模型结构、注意力机制和训练流程感兴趣。我需要简要描述Qwen的架构,比如Transformer层和位置编码,并提到其高效的自注意力实现。此外,结合LLaMA-Factory微调流程,说明如何在现有模型基础上进行适配,比如修改模型配置文件。 最后,生成相关问题时要覆盖微调步骤、配置调整、性能优化和源码结构等方面,帮助用户深入理解。需要确保所有技术术语使用正确,并引用提供的参考资料,比如环境准备和项目官网链接。</think>### LLaMA-Factory 微调方法解析 #### 一、微调流程 1. **数据准备** - 支持JSON格式数据集,需包含"instruction"(任务描述)、"input"(输入数据)、"output"(期望输出)三个字段 - 数据路径配置示例: ```python data_args = dict( dataset_dir="data", template="qwen", task_type="supervised_finetuning" ) ``` 2. **微调方法选择** - **LoRA**:通过低秩矩阵分解实现参数高效微调,适合显存受限场景。核心
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊城迷鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值