学习

1. el-dialog中的组件或内容想关闭后每次初始化

<el-dialog 
    :visible.sync="showCron" 
    v-if="showCron">
</el-dialog>


el-table中设置height后 合计行不显示
getSummaries(param) {
    // 增加代码 start
  this.$nextTick(() => {
    this.$refs.table.doLayout();
  });
  // 增加代码 end
  
  
  
  const { columns, data } = param;
  let total = 0;
  data.forEach(item => {
    total += item.value;
  });
  return ['总计', total];
},


2. echarts 自适应

methods: {
    resize() {
        if (this.resizeTimer) clearTimeout(this.resizeTimer);
        this.resizeTimer = setTimeout(() => {
            this.$refs.numberAnalyseRef.$refs.BaseAnalyseChartRef.resize();
        }, 200);
    }
}

activated() {
    ...
    this.resize();
    window.addEventListener('resize', this.resize);
}

deactived() {
    window.removeEventListener('resize', this.resize);
}

3. echarts tooltip内容在父容器中显示不全
tooltip: {
    ...,
    confine: true    // 将 tooltip 框限制在图表的区域内
}

4. 文字不可选中
.no-selected {
    -webkit-user-select: none;
    -moz-user-select: none;
    -ms-user-select: none;
    user-select: none;
  }

5. css技巧
三角(向下)
.triangle {
  width: 0px;
  height: 0px;
  border: 10px solid transparent;
  border-top-color: red;
}

6/2025 MP4 出版 |视频: h264, 1280x720 |音频:AAC,44.1 KHz,2 Ch 语言:英语 |持续时间:12h 3m |大小: 4.5 GB 通过实际 NLP 项目学习文本预处理、矢量化、神经网络、CNN、RNN 和深度学习 学习内容 学习核心 NLP 任务,如词汇切分、词干提取、词形还原、POS 标记和实体识别,以实现有效的文本预处理。 使用 One-Hot、TF-IDF、BOW、N-grams 和 Word2Vec 将文本转换为向量,用于 ML 和 DL 模型。 了解并实施神经网络,包括感知器、ANN 和数学反向传播。 掌握深度学习概念,如激活函数、损失函数和优化技术,如 SGD 和 Adam 使用 CNN 和 RNN 构建 NLP 和计算机视觉模型,以及真实数据集和端到端工作流程 岗位要求 基本的 Python 编程知识——包括变量、函数和循环,以及 NLP 和 DL 实现 熟悉高中数学——尤其是线性代数、概率和函数,用于理解神经网络和反向传播。 对 AI、ML 或数据科学感兴趣 – 不需要 NLP 或深度学习方面的经验;概念是从头开始教授的 描述 本课程专为渴望深入了解自然语言处理 (NLP) 和深度学习的激动人心的世界的人而设计,这是人工智能行业中增长最快和需求最旺盛的两个领域。无论您是学生、希望提升技能的在职专业人士,还是有抱负的数据科学家,本课程都能为您提供必要的工具和知识,以了解机器如何阅读、解释和学习人类语言。我们从 NLP 的基础开始,从头开始使用文本预处理技术,例如分词化、词干提取、词形还原、停用词删除、POS 标记和命名实体识别。这些技术对于准备非结构化文本数据至关重要,并用于聊天机器人、翻译器和推荐引擎等实际 AI 应用程序。接下来,您将学习如何使用 Bag of Words、TF-IDF、One-Hot E
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值