详解GAN代码之逐行解析GAN代码

训练数据集:手写数字识别

下载链接:https://pan.baidu.com/s/1d9jX5xLHd1x3DFChVCe3LQ 密码:ws28

   在本篇博客中,笔者将逐行解析一下NIPS 2014的Generative Adversarial Networks(生成对抗网络,简称GAN)代码,该篇文章作为GAN系列的开山之作,在近3年吸引了无数学者的目光。在2017-2018年,各大计算机顶会中也都能看到各种GAN的身影。因此,本篇博客就来逐行解析一下使用GAN生成手写数字的代码

   在正式开始之前,笔者想说的是,如果要使得本篇博客对各位读者朋友的学习有帮助,请各位读者朋友们先熟悉生成对抗网络的基本原理。由于对于生成对抗网络的原理详解网络上的资源比较多,在本篇博客中笔者就不再对生成对抗网络的原理进行解释,而是给大家推荐一些对生成对抗网络原理进行了解的链接:

1. 直接进行论文阅读:https://arxiv.org/abs/1406.2661

2. 一篇通俗易懂,形象的GAN原理解释:一文看懂生成式对抗网络GANs:介绍指南及前景展望

3. 一篇比较详细的CSDN博文:生成式对抗网络GAN研究进展(二)——原始GAN

4. 知乎专栏上的文章:GAN原理学习笔记

   如果对生成对抗网络原理已经熟稔的读者朋友,请自动忽略以上链接。并且,笔者以下放出的代码注释是参考了github上面的代码,链接https://github.com/wiseodd/generative-models

   在这里笔者也想衷心感谢一下这位wiseodd大神,在他的generative-models下面的关于生成模型的代码非常全面,本文解析的代码路径是该工程下面的GAN/vanilla_gan/gan_tensorflow.py文件。笔者沿用了作者的代码,只是增加了模型保存与summary记录的少量代码,下面放出代码及注释:

import tensorflow as tf #导入tensorflow
from tensorflow.examples.tutorials.mnist import input_data #导入手写数字数据集
import numpy as np #导入numpy
import matplotlib.pyplot as plt #plt是绘图工具,在训练过程中用于输出可视化结果
import matplotlib.gridspec as gridspec #gridspec是图片排列工具,在训练过程中用于输出可视化结果
import os #导入os

def save(saver, sess, logdir, step): #保存模型的save函数
   model_name = 'model' #模型名前缀
   checkpoint_path = os.path.join(logdir, model_name) #保存路径
   saver.save(sess, checkpoint_path, global_step=step) #保存模型
   print('The checkpoint has been created.')

def xavier_init(size): #初始化参数时使用的xavier_init函数
    in_dim = size[0] 
    xavier_stddev = 1. / tf.sqrt(in_dim / 2.) #初始化标准差
    return tf.random_normal(shape=size, stddev=xavier_stddev) #返回初始化的结果

X = tf.placeholder(tf.float32, shape=[None, 784]) #X表示真的样本(即真实的手写数字)

D_W1 = tf.Variable(xavier_init([784, 128])) #表示使用xavier方式初始化的判别器的D_W1参数,是一个784行128列的矩阵
D_b1 = tf.Variable(tf.zeros(shape=[128])) #表示全零方式初始化的判别器的D_1参数,是一个长度为128的向量

D_W2 = tf.Variable(xavier_init([128, 1])) #表示使用xavier方式初始化的判别器的D_W2参数,是一个128行1列的矩阵
D_b2 = tf.Variable(tf.zeros(shape=[1])) ##表示全零方式初始化的判别器的D_1参数,是一个长度为1的向量

theta_D = [D_W1, D_W2, D_b1, D_b2] #theta_D表示判别器的可训练参数集合


Z = tf.placeholder(tf.float32, shape=[None, 100]) #Z表示生成器的输入(在这里是噪声),是一个N列100行的矩阵

G_W1 = tf.Variable(xavier_init([100, 128])) #表示使用xavier方式初始化的生成器的G_W1参数,是一个100行128列的矩阵
G_b1 = tf.Variable(tf.zeros(shape=[128])) #表示全零方式初始化的生成器的G_b1参数,是一个长度为128的向量

G_W2 = tf.Variable(xavier_init([128, 784])) #表示使用xavier方式初始化的生成器的G_W2参数,是一个128行784列的矩阵
G_b2 = tf.Variable(tf.zeros(shape=[784])) #表示全零方式初始化的生成器的G_b2参数,是一个长度为784的向量

theta_G = [G_W1, G_W2, G_b1, G_b2] #theta_G表示生成器的可训练参数集合


def sample_Z(m, n): #生成维度为[m, n]的随机噪声作为生成器G的输入
    return np.random.uniform(-1., 1., size=[m, n])


def generator(z): #生成器,z的维度为[N, 100]
    G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1) #输入的随机噪声乘以G_W1矩阵加上偏置G_b1,G_h1维度为[N, 128]
    G_log_prob = tf.matmul(G_h1, G_W2) + G_b2 #G_h1乘以G_W2矩阵加上偏置G_b2,G_log_prob维度为[N, 784]
    G_prob = tf.nn.sigmoid(G_log_prob) #G_log_prob经过一个sigmoid函数,G_prob维度为[N, 784]

    return G_prob #返回G_prob


def discriminator(x): #判别器,x的维度为[N, 784]
    D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1) #输入乘以D_W1矩阵加上偏置D_b1,D_h1维度为[N, 128]
    D_logit = tf.matmul(D_h1, D_W2) + D_b2 #D_h1乘以D_W2矩阵加上偏置D_b2,D_logit维度为[N, 1]
    D_prob = tf.nn.sigmoid(D_logit) #D_logit经过一个sigmoid函数,D_prob维度为[N, 1]

    return D_prob, D_logit #返回D_prob, D_logit


def plot(samples): #保存图片时使用的plot函数
    fig = plt.figure(figsize=(4, 4)) #初始化一个4行4列包含16张子图像的图片
    gs = gridspec.GridSpec(4, 4) #调整子图的位置
    gs.update(wspace=0.05, hspace=0.05) #置子图间的间距

    for i, sample in enumerate(samples): #依次将16张子图填充进需要保存的图像
        ax = plt.subplot(gs[i])
        plt.axis('off')
        ax.set_xticklabels([])
        ax.set_yticklabels([])
        ax.set_aspect('equal')
        plt.imshow(sample.reshape(28, 28), cmap='Greys_r')

    return fig


G_sample = generator(Z) #取得生成器的生成结果
D_real, D_logit_real = discriminator(X) #取得判别器判别的真实手写数字的结果
D_fake, D_logit_fake = discriminator(G_sample) #取得判别器判别的生成的手写数字的结果

D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_real, labels=tf.ones_like(D_logit_real))) #对判别器对真实样本的判别结果计算误差(将结果与1比较)
D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.zeros_like(D_logit_fake))) #对判别器对虚假样本(即生成器生成的手写数字)的判别结果计算误差(将结果与0比较)
D_loss = D_loss_real + D_loss_fake #判别器的误差
G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.ones_like(D_logit_fake))) #生成器的误差(将判别器返回的对虚假样本的判别结果与1比较)

dreal_loss_sum = tf.summary.scalar("dreal_loss", D_loss_real) #记录判别器判别真实样本的误差
dfake_loss_sum = tf.summary.scalar("dfake_loss", D_loss_fake) #记录判别器判别虚假样本的误差
d_loss_sum = tf.summary.scalar("d_loss", D_loss) #记录判别器的误差
g_loss_sum = tf.summary.scalar("g_loss", G_loss) #记录生成器的误差

summary_writer = tf.summary.FileWriter('snapshots/', graph=tf.get_default_graph()) #日志记录器

D_solver = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_D) #判别器的训练器
G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_G) #生成器的训练器

mb_size = 128 #训练的batch_size
Z_dim = 100 #生成器输入的随机噪声的列的维度

mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True) #mnist是手写数字数据集

sess = tf.Session() #会话层
sess.run(tf.global_variables_initializer()) #初始化所有可训练参数

if not os.path.exists('out/'): #初始化训练过程中的可视化结果的输出文件夹
    os.makedirs('out/')

if not os.path.exists('snapshots/'): #初始化训练过程中的模型保存文件夹
    os.makedirs('snapshots/')

saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=50) #模型的保存器

i = 0 #训练过程中保存的可视化结果的索引

for it in range(1000000): #训练100万次
    if it % 1000 == 0: #每训练1000次就保存一下结果
        samples = sess.run(G_sample, feed_dict={Z: sample_Z(16, Z_dim)})

        fig = plot(samples) #通过plot函数生成可视化结果
        plt.savefig('out/{}.png'.format(str(i).zfill(3)), bbox_inches='tight') #保存可视化结果
        i += 1
        plt.close(fig)

    X_mb, _ = mnist.train.next_batch(mb_size) #得到训练一个batch所需的真实手写数字(作为判别器的输入)

    #下面是得到训练一次的结果,通过sess来run出来
    _, D_loss_curr, dreal_loss_sum_value, dfake_loss_sum_value, d_loss_sum_value = sess.run([D_solver, D_loss, dreal_loss_sum, dfake_loss_sum, d_loss_sum], feed_dict={X: X_mb, Z: sample_Z(mb_size, Z_dim)})
    _, G_loss_curr, g_loss_sum_value = sess.run([G_solver, G_loss, g_loss_sum], feed_dict={Z: sample_Z(mb_size, Z_dim)})

    if it%100 ==0: #每过100次记录一下日志,可以通过tensorboard查看
        summary_writer.add_summary(dreal_loss_sum_value, it)
        summary_writer.add_summary(dfake_loss_sum_value, it)
        summary_writer.add_summary(d_loss_sum_value, it)
        summary_writer.add_summary(g_loss_sum_value, it)

    if it % 1000 == 0: #每训练1000次输出一下结果
        save(saver, sess, 'snapshots/', it)
        print('Iter: {}'.format(it))
        print('D loss: {:.4}'. format(D_loss_curr))
        print('G_loss: {:.4}'.format(G_loss_curr))
        print()

   在上面的代码中,各位读者朋友可以看到,生成器与判别器都是使用多层感知机实现的(没有使用卷积神经网络)。生成器的输入是随机噪声,生成的是手写数字,生成器与判别器均使用Adam优化器进行训练并训练100w次。

   在上面的代码中,笔者添加了各种summary保存了训练中的误差,结果如下所示。

   判别器判别真实样本的误差变化:


   判别器判别虚假样本(即生成器G生成的手写数字)的误差变化:


   判别器的误差变化(上面两者之和):


   生成器的误差变化:


   下面是训练过程中输出的可视化结果,笔者选择了一些,大家可以看到,生成器输出结果最开始非常糟糕,但是随着训练的进行到训练中期输出效果越来越好:

   训练2k次的输出:


   训练6k次的输出:


   训练4.2w次的输出


   训练14.4w次的输出:


   训练24.4w次的输出:


   训练31.6w次的输出:


   在训练的后期(训练80w次之后),大家从生成器的误差曲线可以看出,生成器的误差陡增,生成效果也相应变差了(如下图所示),这是生成器与判别器失衡的结果。

   训练85.7w次的输出:


   训练93.6w次的输出:


   训练97.2w次的输出:


   到这里,生成对抗网络的代码讲解就接近尾声了,衷心希望笔者的本篇博客对大家有帮助!

   欢迎阅读笔者后续博客,各位读者朋友的支持与鼓励是我最大的动力!


written by jiong

日出入安穷?时世不与人同。

故春非我春,夏非我夏,秋非我秋,

冬,亦非我冬。

<think>嗯,用户这次在询问PyTorch实现DCGAN代码示例和资料。用户之前询问过快速排序的实现,现在突然转向深度学习框架的生成对抗网络实现,可能是研究者或工程实践者,需要具体的技术资源。用户提供的三个引用材料很有针对性:引用1提到PyTorch教程资源,特别标注了GAN实现部分;引用2是PyTorch官方DCGAN教程的英文原文,详细解释了实现原理;引用3是中文入门教程。根据用户明确要求“PyTorchDCGANimplementationexample”,需要聚焦代码层面的实用资源。用户提到“参考站内引用但并非真实需求”,说明引文只是线索,实际需要最新可运行的DCGAN示例。因此考虑推荐三个层级的资源:官方权威实现、代码详解教程、中文简化版本。其中官方DCGAN示例库必须首选,这是经过社区验证的完整项目;pytorch-beginner作为补充更适合调试学习;中文博客则降低理解门槛。注意到用户没有要求理论解释,重点在“代码示例”,所以回复结构突出具体GitHub链接和可运行的代码块。考虑把pytorch/examples项目链接放在最前,因为它包含dataloader等完整工程模块。额外想到需提醒GPU配置问题,因为引用2提到“需要一两个GPU”——这直接影响用户能否运行代码,考虑在注意事项里强调环境要求。用户似乎习惯技术型答案,可以添加三个自然衍生问题:性能提升、训练技巧、迁移应用。这些问题都源自实际开发中必然遇到的调试需求,比如模式坍塌在GAN训练中很常见,相关论文的扩展阅读也有实际价值。</think> 以下是关于PyTorch实现DCGAN的精选资源和代码示例整理,结合站内引用及权威资料: --- ### **1. 官方DCGAN实现(最核心推荐)** **资源**:PyTorch官方示例库 ```python # 克隆官方DCGAN代码库 git clone https://github.com/pytorch/examples.git cd examples/dcgan ``` **关键特点**: - 完整实现深度卷积生成对抗网络(DCGAN)[^2] - 支持训练自定义数据集 - 提供预训练模型生成图像 - 详细注释网络结构(生成器Generator & 判别器Discriminator) > **文件结构**: > `main.py`(主训练逻辑) > `model.py`(网络架构定义) > `requirements.txt`(依赖项) --- ### **2. 实战教程与代码解析** **(1) PyTorch官方DCGAN教程** - **链接**:[DCGAN Tutorial](https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html) - **内容**: - 从数据集加载到训练流程完整代码 - 关键组件逐行解析(如`nn.ConvTranspose2d`上采样) - 可视化训练过程中的生成图像 ```python # 生成器核心代码片段 class Generator(nn.Module): def __init__(self): super().__init__() self.main = nn.Sequential( nn.ConvTranspose2d(100, 512, 4, 1, 0, bias=False), nn.BatchNorm2d(512), nn.ReLU(True), # ... 更多层定义 ) ``` **(2) 中文简化实现(SherlockLiao/pytorch-beginner)** - **GitHub库**:[pytorch-beginner - GAN示例](https://github.com/SherlockLiao/pytorch-beginner/tree/master/08-GAN) - **优势**: - 更简洁的代码结构(约200行) - 适配MNIST/CelebA等常见数据集 - 含训练进度可视化函数 --- ### **3. 扩展学习资源** 1. **MorvanZhou教程**: [PyTorch-GAN实现](https://github.com/MorvanZhou/PyTorch-Tutorial/tree/master/tutorial-contents)(含GAN基础原理动画) 2. **论文复现项目**: [DCGAN-PyTorch](https://github.com/carpedm20/DCGAN-pytorch)(社区高星项目,含训练技巧) --- ### **注意事项** - **硬件要求**:DCGAN训练需GPU加速(显存≥4GB)[^2] - **数据集准备**:若使用自定义数据,需调整`torchvision.datasets.ImageFolder`的数据路径 - **参数调优**:初始学习率建议0.0002,批大小≥64(避免模式坍塌) > ⚠️ 避免的误区:非官方库中未经验证的GAN实现(如部分博客代码)常存在梯度计算错误或架构设计缺陷。 ---
评论 89
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值