RBF-PID

%Adaptive PID control based on RBF Identification
clear all;
close all;

xite=0.5;          %学习速率xite
alfa=0.05;          %动量因子alfa
% beta=0.01;          %
x=[0,0,0]';         %输入向量x

ci=zeros(3,6);      %第i个节点的中心矢量C
bi=10*ones(6,1);    %第i个节点的基宽向量B
w=0.10*ones(6,1);   %权值向量W

h=[0,0,0,0,0,0]';   %径向基向量h
    
ci_1=ci;ci_3=ci_1;ci_2=ci_1;    %c(i-1),c(i-3),c(i-2),迭代用
bi_1=bi;bi_2=bi_1;bi_3=bi_2;    %b(i-1),b(i-2),b(i-3)
w_1=w;w_2=w_1;w_3=w_1;          %w(i-1),w(i-2),w(i-3)

u_1=0;y_1=0;                    %u(k-1),y(k-1),迭代用
xc=[0,0,0]';                    %增量式PID的输入
error_1=0;error_2=0;            %error(k-1),error(k-1),迭代用
kp0=0.01;ki0=0.01;kd0=0.01;
% kp0=0.003;ki0=0.34;kd0=0.01;

pidu_1=0;pidy_1=0;
pidxc=[0,0,0]';
piderror_1=0;piderror_2=0;
% pidkp=0.003;pidki=0.34;pidkd=0.01;
pidkp=0.01;pidki=0.01;pidkd=0.01;

kp_1=kp0;
kd_1=kd0;
ki_1=ki0;

xitekp=0.15;
xitekd=0.15;
xiteki=0.15;

% ts=0.001;
ts=0.01
for k=1:1:2000
   time(k)=k*ts;
%     yd(k)=1;
%阶梯响应
%    if mod(floor(k/100),3)==0
%        yd(k)=1;
%    elseif mod(floor(k/100),3)==1
%        yd(k)=0;
%    else 
%     
03-08
### RBF-PID 控制器实现方法 径向基函数 (RBF) 神经网络与比例积分微分 (PID) 控制器结合形成的 RBF-PID 控制器是一种先进的自适应控制策略。这种组合不仅继承了传统 PID 的优点,还引入了神经网络强大的非线性映射能力。 #### 实现方法 为了构建有效的 RBF-PID 控制器,在 MATLAB/Simulink 中可以按照如下方式操作: 1. **建立模型** 需要先创建被控对象的动态特性模型,并将其导入到 Simulink 环境中作为测试平台[^2]。 2. **设计 RBF 网络结构** 设计合适的输入层节点数、隐含层数目以及输出层配置来匹配具体应用需求。通常情况下,会采用高斯型激活函数并调整其宽度参数以优化学习效率和泛化性能[^3]。 3. **集成 PID 组件** 将标准的比例-积分-微分环节嵌入至整个控制系统架构之中,形成闭环反馈回路的一部分。此时,可以通过调节三个增益系数 Kp, Ki 和 Kd 来改善系统的响应速度和平稳度[^1]。 4. **训练过程** 利用历史数据或者实时采集的数据集对所建模的 RBF 网络进行离线或在线训练,使得该网络能够根据当前误差及其变化趋势预测最优的 PID 参数设置方案。 5. **调参技巧** 对于 RBF-PID 控制器而言,除了常规意义上的 PID 增益外,还需要关注以下几个方面来进行精细调试: - **中心点选取**:合理选择 RBF 函数对应的各个聚类中心位置,这直接影响到了最终决策面的质量; - **扩展常量设定**:适当扩大或缩小各隐藏单元的感受野范围有助于平衡局部敏感性和全局稳定性之间的关系; - **权重更新机制**:确定恰当的学习率大小及梯度下降方向,从而加快收敛速率的同时防止过拟合现象的发生。 ```matlab % 创建一个简单的 RBF 网络实例用于演示目的 net = newrb(P',T'); view(net); ``` ### 应用场景 由于具备良好的鲁棒性和灵活性,RBF-PID 控制器广泛应用于工业自动化领域内的多个方面,比如但不限于: - 复杂化工流程中的温度、压力等物理量精确调控; - 机器人运动轨迹规划过程中姿态角稳定保持; - 新能源发电装置如风力发电机桨距角精准定位。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值