ESP32-CAM人脸识别

本文是ESP32-CAM开发板的快速入门指南。我们将向您展示如何使用Arduino IDE在不到5分钟的时间内设置具有面部识别和检测功能的视频流式Web服务器。

本文是ESP32-CAM开发板的快速入门指南。我们将向您展示如何使用Arduino IDE在不到5分钟的时间内设置具有面部识别和检测功能的视频流式Web服务器。

所需零件

介绍ESP32-CAM

特点

ESP32-CAM引脚排列

视频流服务器

安装ESP32插件

CameraWebServer示例代码

ESP32-CAM上传代码

获取IP地址

访问视频流服务器

详情参阅 - 亚图跨际

### 使用ESP32-CAM 实现人脸识别 #### 准备工作 为了使ESP32-CAM能够执行人脸识别任务,需先完成一系列准备工作。这包括但不限于安装必要的库文件、配置硬件连接以及设置网络环境等操作[^1]。 #### 安装依赖库 确保已安装`espface`等人脸检测与识别所需的软件包。可以通过Arduino IDE的库管理器轻松获取这些资源。另外,对于图像处理部分,则可能需要用到`JPEGDecoder`这样的辅助类来解码来自相机模块的数据流[^2]。 #### 初始化摄像头参数 在启动项目之前,应该定义好所使用的具体型号对应的引脚分配方案,并通过调用相应的API接口来进行初始化设定: ```cpp #include "esp_camera.h" // 设置AI Thinker版ESP32 CAM的具体IO映射关系 #define PWDN_GPIO_NUM 32 #define RESET_GPIO_NUM -1 #define XCLK_GPIO_NUM 0 #define SIOD_GPIO_NUM 26 #define SIOC_GPIO_NUM 27 #define Y9_GPIO_NUM 35 #define Y8_GPIO_NUM 34 #define Y7_GPIO_NUM 39 #define Y6_GPIO_NUM 36 #define Y5_GPIO_NUM 21 #define Y4_GPIO_NUM 19 #define Y3_GPIO_NUM 18 #define Y2_GPIO_NUM 5 #define VSYNC_GPIO_NUM 25 #define HREF_GPIO_NUM 23 #define PCLK_GPIO_NUM 22 void setup() { Serial.begin(115200); camera_config_t config; config.ledc_channel = LEDC_CHANNEL_0; config.ledc_timer = LEDC_TIMER_0; config.pin_d0 = Y2_GPIO_NUM; config.pin_d1 = Y3_GPIO_NUM; config.pin_d2 = Y4_GPIO_NUM; config.pin_d3 = Y5_GPIO_NUM; config.pin_d4 = Y6_GPIO_NUM; config.pin_d5 = Y7_GPIO_NUM; config.pin_d6 = Y8_GPIO_NUM; config.pin_d7 = Y9_GPIO_NUM; config.pin_xclk = XCLK_GPIO_NUM; config.pin_pclk = PCLK_GPIO_NUM; config.pin_vsync = VSYNC_GPIO_NUM; config.pin_href = HREF_GPIO_NUM; config.pin_sscb_sda = SIOD_GPIO_NUM; config.pin_sscb_scl = SIOC_GPIO_NUM; config.pin_pwdn = PWDN_GPIO_NUM; config.pin_reset = RESET_GPIO_NUM; config.xclk_freq_hz = 20000000; config.pixel_format = PIXFORMAT_JPEG; // 默认情况下不启用帧缓冲区 config.frame_size = FRAMESIZE_UXGA; config.jpeg_quality = 12; config.fb_count = 1; // 按照上述配置初始化摄像机 esp_err_t err = esp_camera_init(&config); } ``` 此段代码展示了如何针对特定版本(即由安信可生产的ESP32-CAM)进行基本的初始化过程。 #### 构建人脸识别逻辑 一旦完成了前期准备之后就可以着手构建核心的人脸识别算法了。这里提供了一个简单的框架用于捕获当前画面并尝试从中提取人脸特征信息以便后续匹配对比: ```cpp #include <WiFi.h> #include <HTTPClient.h> String api_key = "your_api_key"; // 替换成自己的云服务密钥 const char* serverName = "http://example.com/api/recognize"; void loop(){ camera_fb_t * fb = NULL; bool faceDetected = false; // 获取一帧数据 fb = esp_camera_fb_get(); if(!fb){ Serial.println("Camera capture failed"); return; } HTTPClient http; String postStr = "--boundary\r\n"; postStr += "Content-Disposition: form-data; name=\"image\"; filename=\"snap.jpg\"\r\n"; postStr += "Content-Type: image/jpeg\r\n\r\n"; postStr += "--boundary--\r\n"; WiFiClient client; http.begin(client, serverName); http.addHeader("Content-Type", "multipart/form-data; boundary=boundary"); int httpResponseCode = http.POST(fb->buf, fb->len, postStr.c_str(), postStr.length()); if (httpResponseCode>0) { String response = http.getString(); StaticJsonDocument<200> doc; DeserializationError error = deserializeJson(doc, response); if (!error && doc["success"]) { const char* result = doc["result"]; Serial.print("Recognition Result:"); Serial.println(result); if(strcmp(result,"recognized")==0){ faceDetected=true; } }else{ Serial.println("Failed to parse JSON or recognition unsuccessful."); } } else { Serial.printf("POST request failed with code %d.\n", httpResponseCode); } esp_camera_fb_return(fb); delay(2000); // 控制请求频率 if(faceDetected){ // 执行开门动作或其他相应措施... } } ``` 这段程序片段说明了怎样利用ESP32-CAM拍摄照片并通过HTTPS POST方法将其发送给远程服务器端口以供进一步分析处理;同时接收返回的结果判断是否存在已知人员的脸部记录从而决定是否触发某些事件比如解锁门禁装置等等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值