要设计更真实的场景化题目,关键在于挖掘现实工程中的复杂性,避免理想化的“教科书式问题”。以下是经过工业实践验证的设计方法论,包含具体技巧和案例模板:
一、真实场景的四大核心要素
-
脏数据与边缘情况
- 植入现实中存在的异常数据(如用户输入Emoji导致编码错误)
- 示例:
“设计国际电商地址系统,需处理:
- 日本地址包含『1-2-3 メゾン青山101』类特殊字符
- 巴西用户将省名写在街道字段中”
-
历史技术债务
- 强制在遗留系统上改造(如要求兼容老版本API)
- 示例:
“现有订单系统用MySQL分库键是user_id,现需按shop_id查询Top100商家,不允许重建分片方案”
-
跨角色冲突需求
- 引入业务/运维/安全的对立诉求
- 示例:
“风控团队要求保留用户操作日志7年,运维团队反对存储超过3个月”
-
资源硬约束
- 明确预算/工期/人力限制(如服务器成本不得增加20%以上)
二、题目设计七步法(附工业级案例)
案例背景:在线教育直播答题系统
**业务诉求**:
1. 支持万人同时在线答题(每题限时10秒)
2. 实时显示排行榜(精确到毫秒级排名)
3. 防作弊:同一账号多地登录自动冻结
**已知限制**:
- 现有基础设施:Kafka集群、Redis5.0、MySQL8.0
- 成本上限:每月服务器费用≤$5k
- 遗留问题:历史答题数据存储在MongoDB分片集群中
设计步骤:
-
埋设数据陷阱
补充:“部分客户端时钟误差达±3秒,且网络延迟标准差为800ms”
-
植入非功能需求
增加约束:“教育部门要求所有答题记录可审计,存储不可篡改”
-
关联旧系统痛点
提示:“历史MongoDB集群已无扩容空间,新数据必须存在MySQL”
-
引入突发流量
追加场景:“某明星教师直播时,瞬时涌入50万学生导致现有系统崩溃”
-
设置故障链
灾难模拟:“Redis主从切换期间,排行榜出现重复排名”
-
要求成本测算
定量验证:“估算千人同时在线的服务器成本,需列出资源配置清单”
-
开放修复漏洞
反问:“如果让你重构此系统,会保留/替换哪些组件?为什么?”
三、提升真实性的进阶技巧
1. 用真实故障反推题目
- 例如基于某厂Cache穿透事故设计:
“促销活动时,频繁请求不存在的商品ID
product-2025
,导致DB过载,如何在不影响正常请求的前提下防御?”
2. 移植业界公开事故
- 参考GitLab误删数据库事件:
“运维误执行
DROP DATABASE
后,如何设计灾备方案确保:
a) 数据损失≤1分钟
b) 恢复时间≤15分钟
要求兼容多云环境(AWS/GCP)”
3. 融入组织特定上下文
- 结合企业自身技术栈:
“我司使用Spring Cloud Gateway,现需为每个API增加请求耗时百分位统计(P99/P95),不得重启网关”
4. 构建多阶段演进场景
timeline
title 系统演进路线埋点
2023 : 单机房部署
2024 : 扩展为两地三中心
2025 : 需满足GDPR跨境数据传输要求
要求候选人说明每个阶段的架构改造要点
四、真实工业场景题库
Case 1:物流轨迹补偿系统
背景:
GPS设备每30秒上报位置,但因隧道/信号丢失导致:
- 15%点位缺失
- 10%点位时间戳乱序
需求:
- 重建完整轨迹(允许±100米误差)
- 计算实际里程(与地图路径偏差>5%需预警)
技术难点:
- 不能使用商用GIS服务(成本限制)
- 需兼容货车/船舶不同移动模式
Case 2:医疗报告紧急分级系统
背景:
AI初筛CT影像后生成报告,需根据关键词自动分级:
- “肿瘤增大” → 紧急(10分钟内通知医生)
- “轻度炎症” → 常规(24小时内处理)
现实冲突:
- 放射科拒绝提供标注数据(隐私顾虑)
- 误判“紧急”会导致医生工作流中断
设计任务:
提出满足伦理要求的技术方案,给出误判率预估方法
Case 3:电网实时定价系统(软硬件结合)
基础设施:
- 10万智能电表(每5分钟上报)
- 老旧电表传输延迟达±8分钟
- 电价计算服务器位于省级机房
需求:
- 每15分钟生成动态电价
- 电价波动超过20%需立即告警
特殊约束:
- 部分乡镇网络每日中断2-3小时
- 必须使用国密算法加密数据
五、避免“伪真实”陷阱
表面真实实际无效 | 改进方案 |
---|---|
“设计淘宝购物车” | “设计沙特版购物车,要求: - 支持伊斯兰历法促销周期 - 商品图片按教规自动过滤” |
“实现JWT鉴权” | “某APM系统发现JWT密钥硬编码在前端, 在不踢已登录用户前提下完成密钥轮换” |
“优化数据库查询” | “某SQL耗时从2s突增至5分钟, 已知EXPLAIN显示索引命中,请列出排查路径” |
六、评估量表设计
真实场景题的评分应聚焦工程决策质量而非标准答案:
能力维度 | 观察点举例 | 权重 |
---|---|---|
约束识别 | 是否主动询问数据量级/合规要求 | 20% |
折中决策 | 在成本与性能间的量化取舍 | 30% |
故障预判 | 针对弱网/时钟漂移设计防御 | 25% |
技术债务管理 | 是否规划旧系统迁移路径 | 15% |
沟通策略 | 如何说服安全团队接受方案 | 10% |
终极心法:真正优秀的场景题应让候选人惊呼
“这和我上个月处理的生产问题一模一样!”
要达到这种效果,必须:
- 从工单系统提取真实案例(脱敏后改造)
- 保留业务场景的“毛边”(模糊需求、脏数据)
- 用定量约束取代定性描述(避免“高可用”这类模糊词)
通过将技术设计置于商业、合规、人性冲突的复杂场域中,才能真正检验工程师的实战素养——这种能力在AI自动生成代码的时代愈发珍贵。