以下是一套经过工业实战验证的高保真场景模板,覆盖不同技术领域,每个模板包含核心冲突点、技术深水区和评估要点,可直接用于面试设计或团队能力训练:
一、金融支付领域:跨境清算对账系统
业务场景
某跨境支付平台每日处理:
- 200万笔交易流水(峰值5000 TPS)
- 涉及7种货币、34家银行通道
- 各国清算窗口不同(伦敦23:00关闭 vs 纽约02:00关闭)
核心需求
- T+1日10:00前完成全球交易对账
- 差额>1000美元需30分钟内告警
- 支持监管回溯审计(保留7年原始报文)
技术约束
- 原始数据含CSV/XML/SWIFT MT940多种格式
- 欧元区要求交易记录加密存储且密钥每90天轮换
- 日本银行系统每日维护时段(03:00-04:00)不可访问
考察重点
- 异构数据管道设计(Schema演化策略)
- 分布式事务一致性(最终一致 vs 对账补偿)
- 密钥管理系统集成方案
二、物联网领域:风电设备预测性维护
硬件环境
- 2000台风力发电机(每台200+传感器)
- 传感器采样率:振动传感器10kHz,温度传感器1Hz
- 边缘网关网络:4G网络(上行带宽≤512Kbps)
核心需求
- 实时检测叶片异常振动(FFT分析延迟≤100ms)
- 预测齿轮箱剩余寿命(准确率>85%)
- 单网关断网时本地缓存8小时数据
数据挑战
- 海上风机盐雾腐蚀导致15%传感器数据漂移
- 冬季积雪覆盖导致红外测温数据异常
- 设备序列号与位置信息存储在不同系统
考察重点
- 边缘计算拓扑设计(Flink vs EdgeX Foundry)
- 数据质量修复策略(卡尔曼滤波应用)
- 低带宽优化(数据压缩+增量传输)
三、电商领域:库存防超卖3.0系统
业务矛盾
- 商家要求:支持预售+秒杀+组合促销
- 财务要求:分仓库/渠道独立核算成本
- 风控要求:防止黄牛批量扫货(同一IP秒杀>5件自动拦截)
技术债务
- 现有系统:Redis集群扣减库存(无事务日志)
- 历史问题:去年双11因网络分区导致超卖2000件
- 新需求:需对接菜鸟/京东等10+物流仓
设计任务
在保证99.995%可用性前提下:
- 实现多级库存分配(总仓→区域仓→门店)
- 解决跨仓调度时的网络延迟问题(RTT 80~200ms)
- 给出CAP选择证明(为何选择AP而非CP?)
评估锚点
- 扣减库存RT95线≤15ms
- 调度策略成本函数设计(运费/时效加权)
四、社交娱乐领域:直播弹幕洪峰系统
场景特征
- 顶流主播开播时:500万在线用户
- 弹幕峰值:22万条/秒(80%集中于前3分钟)
- 合规要求:含敏感词弹幕必须5秒内拦截
性能瓶颈
- 现有方案:Kafka+Spark Streaming处理延迟达8秒
- 用户投诉:高峰期弹幕丢失率12%
- 成本限制:CDN流量费用已超预算300%
重建要求
- 端到端延迟压至≤1秒(含敏感词过滤)
- 弹幕必达率≥99.999%(持久化补偿机制)
- 带宽成本降低40%以上
关键技术点
- 传输协议选型(WebSocket vs QUIC vs HTTP/3)
- 边缘节点弹幕聚合算法
- 敏感词Trie树的内存优化(支持10万级词库)
五、工业软件领域:MES生产追溯系统
工厂环境
- 汽车焊装车间:200个PLC控制点
- 数据采集:每台设备每秒产生50条OPC UA报文
- 网络限制:工业环网不允许组播协议
核心需求
- 完整追溯单个车体(VIN码)的500+工艺参数
- 工艺参数超差时,30秒内触发质量预警
- 支持离线模式(网络中断时本地存储4小时数据)
现实困境
- 部分老旧PLC仅支持Modbus RTU协议
- 车间强电磁干扰导致0.1%数据包CRC错误
- IT部门要求数据接入Kafka集群,但OT网络隔离
设计挑战
- 工业协议转换网关设计
- 时序数据存储选型(TimescaleDB vs TDengine)
- 断网续传的数据对齐方案
六、工具类增强模板
1. 添加「埋雷点」的技巧
在模板中植入看似合理实则致命的陷阱:
“某方案建议用Redis Sorted Set存储实时排行榜 → 但未考虑同分时成员重复问题(ZADD相同分数会导致覆盖)”
2. 动态变量注入
用占位符构建可配置场景:
“当{数据中心网络抖动阈值}超过{丢包率5%}持续{时间>2分钟}时,如何保证{核心支付服务}SLA不降级?”
3. 成本沙盘推演
要求候选人填写资源清单:
组件 | 配置示例 | 月成本($) |
---|---|---|
Kafka Broker | 6台 c5.4xlarge | 4,200 |
Redis集群 | 3组 32G主从 | 2,880 |
网络流量 | 跨区传输 80TB | 9,600 |
七、评判高阶能力的金标准
当候选人给出方案后,抛出灵魂追问:
- 扩展性拷问
“如果业务量突然增长10倍,哪个组件会成为瓶颈?如何验证?” - 灾难推演
“假设主数据库被rm -rf,你的恢复SLA是多少?具体步骤?” - 技术选型攻防
“为什么选择RabbitMQ而不是Pulsar?如果CTO坚持用Kafka,你怎么说服?” - 伦理抉择
“当工期只剩2天但发现架构有安全漏洞,你如何决策?”
工业级场景设计精髓:
真正有效的题目必须包含 「不可调和的三元矛盾」,例如:
“在 {成本不超$2万} 的前提下,实现 {99.99%可用性} ,且 {合规部要求全量审计} ”
这种约束会迫使候选人展现工程决策思维,而非教科书式解决方案。