k-means算法的Java实现

本文介绍了k-means算法的基本原理和在非监督学习中的应用。首先阐述了算法的步骤,包括随机选择初始聚类中心,计算数据点与聚类中心的距离并进行分类,然后更新聚类中心直至收敛。接着展示了Matlab的仿真结果,通过随机撒点和k=4的设置,数据成功被分为四组。最后,文章提到了Java实现该算法的可能性,指出可以根据需求调整返回结果,如聚类中心或分类数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

k-means算法的Java实现

前言

k-means算法是一种基于样本间相似性度量的间接聚类方法,属于非监督学习方法。通过指定k值将数据自动迭代分成k组,实现数据分类,可对分类的数据进行进一步的研究。

算法原理

1.在数据中随机选取k个数据作为聚类中心
2.计算其他数据到k个聚类中心的距离(这个距离可以是欧氏距离或者其他距离)
3.根据到聚类中心的最小距离将数据分为k类
4.更新聚类中心的坐标(对分类好的数据求均值)
5.回到2重新进行分类,(进行多次迭代更新,使聚类中心趋于稳定,迭代次数可根据需要自由设定)

Matlab仿真图

来看看matlab仿真结果,先随机撒点
随机撒点

kmeans算法进行分类,k=4
k=4算法分类
数据成功分为4组,由于这里用的均匀分布的随机数,数据也均匀被分为k组。

算法实现

    //Kmeans算法
    //k:聚类数量
    //points:坐标数据
    //iteration:迭代计算次数
    //返回:聚类中心
    public static Point[] Kmeans(int k, ArrayList<Point> points,int iteration){
   
   
        if (points.size()<k) return null;

        //聚类中心
        Point[] centre=new Point[k];
        for(int i=0;i<centre.length;i++){
   <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值