Coins and Queries

本文介绍了一种利用贪心算法解决特定硬币组合问题的方法,通过逆序查找来最小化硬币使用数量,并提供了一个C++实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是一道贪心题,思路由大到小逆序查找,做这个题,还学到一个小技巧:计算2^n不用再用循环,直接用位运算2^n=1<<n;

Polycarp has n coins, the value of the i-th coin is ai. It is guaranteed that all the values are integer powers of 2 (i.e. ai=2d for some non-negative integer number d).

Polycarp wants to know answers on q

queries. The j-th query is described as integer number bj. The answer to the query is the minimum number of coins that is necessary to obtain the value bj using some subset of coins (Polycarp can use only coins he has). If Polycarp can't obtain the value bj, the answer to the j

-th query is -1.

The queries are independent (the answer on the query doesn't affect Polycarp's coins).

Input

The first line of the input contains two integers n

and q (1≤n,q≤2⋅105

) — the number of coins and the number of queries.

The second line of the input contains n

integers a1,a2,…,an — values of coins (1≤ai≤2⋅109). It is guaranteed that all ai are integer powers of 2 (i.e. ai=2d for some non-negative integer number d

).

The next q

lines contain one integer each. The j-th line contains one integer bj — the value of the j-th query (1≤bj≤109

).

Output

Print q

integers ansj. The j-th integer must be equal to the answer on the j-th query. If Polycarp can't obtain the value bj the answer to the j

-th query is -1.

Example

Input

5 4
2 4 8 2 4
8
5
14
10

Output

1
-1
3
2

代码:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<map>
using namespace std;
const int N=2e5+5;
map<long long int,long long int>mp;
int main()
{
    long long int n,m,k,a,b,i,s,s1;
    scanf("%lld%lld",&n,&m);
    for(i=0;i<n;i++)
    {
        scanf("%lld",&a);
        mp[a]++;
    }
    s1=1<<30;
    while(m--)
    {
        scanf("%lld",&b);
        s=0;
        for(i=s1;i>=1;i/=2)
        {
            k=min(mp[i],b/i);
            b-=k*i;
            s+=k;
            if(b==0)
                break;
        }
        if(b==0)
            printf("%lld\n",s);
        else
            printf("-1\n");
    }
    return 0;
}
Monocarp is going to make a purchase with cost of exactly m m burles. He has two types of coins, in the following quantities: coins worth 1 1 burle: a 1 a 1 ​ regular coins and infinitely many fancy coins; coins worth k k burles: a k a k ​ regular coins and infinitely many fancy coins. Monocarp wants to make his purchase in such a way that there's no change — the total worth of provided coins is exactly m m. He can use both regular and fancy coins. However, he wants to spend as little fancy coins as possible. What's the smallest total number of fancy coins he can use to make a purchase? Input The first line contains a single integer t t ( 1 ≤ t ≤ 3 ⋅ 10 4 1≤t≤3⋅10 4 ) — the number of testcases. The only line of each testcase contains four integers m , k , a 1 m,k,a 1 ​ and a k a k ​ ( 1 ≤ m ≤ 10 8 1≤m≤10 8 ; 2 ≤ k ≤ 10 8 2≤k≤10 8 ; 0 ≤ a 1 , a k ≤ 10 8 0≤a 1 ​ ,a k ​ ≤10 8 ) — the cost of the purchase, the worth of the second type of coin and the amounts of regular coins of both types, respectively. Output For each testcase, print a single integer — the smallest total number of fancy coins Monocarp can use to make a purchase. Examples Inputcopy Outputcopy 4 11 3 0 0 11 3 20 20 11 3 6 1 100000000 2 0 0 5 0 1 50000000 Note In the first testcase, there are no regular coins of either type. Monocarp can use 2 2 fancy coins worth 1 1 burle and 3 3 fancy coins worth 3 3 (since k = 3 k=3) burles to get 11 11 total burles with 5 5 total fancy coins. In the second testcase, Monocarp has a lot of regular coins of both types. He can use 11 11 regular coins worth 1 1 burle, for example. Notice that Monocarp doesn't have to minimize the total number of used coins. That way he uses 0 0 fancy coins. In the third testcase, Monocarp can use 5 5 regular coins worth 1 1 burle and 1 1 regular coin worth 3 3 burles. That will get him to 8 8 total burles when he needs 11 11. So, 1 1 fancy coin worth 3 3 burles is enough.
最新发布
03-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值