Python 20190212读入csv绘制分类直方图

该博客使用Python读取CSV文件并绘制分类直方图,展示不同类型的公司对全过程咨询特点的认知情况。通过对数据按列存储,计算各列出现的频次,并用图表进行直观呈现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

comany_type = { } #colm1第一列
know_typeq1 = {’} # colm2 第二列
excute_typeq2 = {’} #colm3第三列
chara_knowsq3 = {’} #colm4-10列

#数据按照行进行存储
file =open(‘suzhou.csv’,‘r’)
lines=file.readlines()
file.close()
row=[]
for line in lines:
row.append(line.split(’,’))
#print(‘第2行:’,row[1])#打印行数组

#数据按照列进行存储
colm = pd.read_csv(‘suzhou.csv’)
colm01zx = colm[colm[‘colm1’]==1]
colm02sj = colm[colm[‘colm1’]==2]
colm03jl = colm[colm[‘colm1’]==3]
colm04yz = colm[colm[‘colm1’]==4]
colm05gl = colm[colm[‘colm1’]==5]

comany_type_counts = colm[‘colm1’].value_counts()
know_typeq1_counts = colm[‘colm2’].value_counts()
excute_typeq2_counts = colm[‘colm3’].value_counts()

def autolabel(rects):
for rect in rects:
height = rect.get_height()
plt.text(rect.get_x()+rect.get_width()/2., 1.01*height, ‘%s’ % int(height))

plt.figure(figsize=(7,7))
x=chara_knowsq3.keys()
y=(colm[‘colm4’].count(),colm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值