WebAI.js:PaddleDetection 模型导出和部署

1. 介绍

  • 本教程将介绍如何使用 PaddleDetection 套件导出推理模型并使用 WebAI.js 部署到网页前端
  • 示例项目 GitHub:AgentMaker/WebAI.js-Examples

2. 同步代码

  • 克隆 PaddleDetection 代码

    $ git clone https://github.com/PaddlePaddle/PaddleDetection --depth 1
    

2. 导出 Paddle 推理模型

  • PaddleDetection 的导出脚本位于 PaddleDetection/tools/export_model.py

  • 更多详细的使用方法可参考 PaddleDetection 官方文档

  • 作为演示,所以使用官方提供的 PPYOLO tiny 预训练模型进行导出,具体步骤如下:

  1. 切换工作目录

    $ cd ./PaddleDetection
    
  2. 安装依赖

    $ pip install -r requirements.txt
    
  3. 导出 Paddle 格式的推理模型

    # 使用脚本时通过命令行参数指定模型的配置文件、预训练模型、保存目录和当前运行的设备类型
    
    $ python tools/export_model.py \
        -c configs/ppyolo/ppyolo_tiny_650e_coco.yml \
        --output_dir=../inference_model \
        -o weights=https://paddledet.bj.bcebos.com/models/ppyolo_tiny_650e_coco.pdparams \
        use_gpu=False
    

3. 转换为 ONNX 模型

  1. 安装 Paddle2ONNX

    $ pip install paddle2onnx
    
  2. 模型转换

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值