1. 介绍
- 本教程将介绍如何使用 PaddleDetection 套件导出推理模型并使用 WebAI.js 部署到网页前端
- 示例项目 GitHub:AgentMaker/WebAI.js-Examples
2. 同步代码
-
克隆 PaddleDetection 代码
$ git clone https://github.com/PaddlePaddle/PaddleDetection --depth 1
2. 导出 Paddle 推理模型
-
PaddleDetection 的导出脚本位于 PaddleDetection/tools/export_model.py
-
更多详细的使用方法可参考 PaddleDetection 官方文档
-
作为演示,所以使用官方提供的 PPYOLO tiny 预训练模型进行导出,具体步骤如下:
-
切换工作目录
$ cd ./PaddleDetection
-
安装依赖
$ pip install -r requirements.txt
-
导出 Paddle 格式的推理模型
# 使用脚本时通过命令行参数指定模型的配置文件、预训练模型、保存目录和当前运行的设备类型 $ python tools/export_model.py \ -c configs/ppyolo/ppyolo_tiny_650e_coco.yml \ --output_dir=../inference_model \ -o weights=https://paddledet.bj.bcebos.com/models/ppyolo_tiny_650e_coco.pdparams \ use_gpu=False
3. 转换为 ONNX 模型
-
安装 Paddle2ONNX
$ pip install paddle2onnx
-
模型转换