OpenCV CUDA模块设备层----- 正切(tangent)运算函数tan()

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

OpenCV的CUDA模块(cudev)中的一个设备函数(device function),用于在 GPU 上对uchar3类型的向量(如 RGB 像素)进行正切(tangent)运算,并返回一个 float3 类型的结果。

函数原型

__device__ __forceinline__ float3 cv::cudev::tan(const uchar3 &a)

参数

  • const uchar3 &a 输入参数为一个 3 通道的无符号字符向量(如 RGB 像素)

代码



#include <opencv2/opencv.hpp>
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/cudev.hpp>
#include <iostream>

__global__ void tanKernel(const uchar3* input, float3* output, int numPixels) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    // if (idx < numPixels) {
        output[idx] = cv::cudev::tan(input[idx]);
   // }
}

int main() {
    // 读取图像
    cv::Mat bgr = cv::imread("/media/dingxin/data/study/OpenCV/sources/images/img0.jpg");
    if (bgr.empty()) {
        std::cerr << "Failed to load image!" << std::endl;
        return -1;
    }

    // 转换为 RGB 格式(uchar3)
    cv::Mat src;
    cv::cvtColor(bgr, src, cv::COLOR_BGR2RGB);

    int width = src.cols;
    int height = src.rows;
    int numPixels = width * height;

    // 分配 GPU 内存
    uchar3* d_input;
    float3* d_output;
    cudaMalloc(&d_input, numPixels * sizeof(uchar3));
    cudaMalloc(&d_output, numPixels * sizeof(float3));

    cudaMemcpy(d_input, src.ptr<uchar3>(), numPixels * sizeof(uchar3), cudaMemcpyHostToDevice);

    // 启动 kernel
    int blockSize = 256;
    int numBlocks = (numPixels + blockSize - 1) / blockSize;
    tanKernel<<<numBlocks, blockSize>>>(d_input, d_output, numPixels);

    // 下载结果
    cv::Mat result(height, width, CV_32FC3);
    cudaMemcpy(result.ptr<float3>(), d_output, numPixels * sizeof(float3), cudaMemcpyDeviceToHost);

    // 显示结果(注意:可能有非常大的值)
    cv::Mat display;
    cv::normalize(result, display, 0, 1, cv::NORM_MINMAX, CV_32F);
    cv::imshow("Tan Result", display);
    cv::waitKey(0);

    // 清理资源
    cudaFree(d_input);
    cudaFree(d_output);

    return 0;
}

运行结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

村北头的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值