2.4梯度和微分

博客探讨了微积分在优化和泛化中的作用,重点在于模型拟合数据的过程和生成能泛化的有效模型。讨论了导数的四种情况,包括亚导数处理不可微点的问题,以及高数中梯度和方向导数的概念。优化涉及模型与观测数据的拟合,而泛化则关注模型在未见数据上的表现。关键词涵盖积分、微分、可微、损失函数、优化和泛化等核心概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

积分(integral calculus
微分(differential calculus)可微(differentiable
变得更好意味着最小化一个 损失函数(loss function)
最终,我们真正关心的是生成一个能够在我们从未见过的数据上表现良好的模型。但我们只能将模型与我们实际能看到的数据相拟合
因此,我们可以将拟合模型的任务分解为两个关键问题:
(1)优化(optimization):用模型拟合观测数据的过程;
(2)泛化(generalization):数学原理和实践者的智慧,能够指导我们生成出有效性超出用于训练的数据集本身的模型。

亚导数 处理了不可微点

在这里插入图片描述

高数课本的梯度 结合方向导数

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

导数的四种情况

在这里插入图片描述

1略

2 标量对向量

在这里插入图片描述
在这里插入图片描述

3.向量对标量

在这里插入图片描述

4.向量对向量 先都化为列向量

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

扩展

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值